
Parallelized rotation and flipping INvariant
Kohonen maps (PINK ) on GPUs

Polsterer K.L.1, Gieseke F.2, Igel C.3, Doser B.1, and Gianniotis N.1 ∗

1- HITS gGmbH (Heidelberg Institute for Theoretical Studies) - Astroinformatics
Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg - Germany

2- Radboud University Nijmegen - Institute for Computing and Information Sciences
Toernooiveld 212, 6525 AJ Nijmegen - The Netherlands

3- University of Copenhagen - Department of Computer Science
Sigurdsgade 41, 2200 København N - Denmark

Abstract. Morphological classification is one of the most demanding
challenges in astronomy. With the advent of all-sky surveys, an enormous
amount of imaging data is publicly available. These data are typically
analyzed by experts or encouraged amateur volunteers. For upcoming
surveys with billions of objects, however, such an approach is not feasible
anymore. In this work, we present a simple yet effective variant of a
rotation-invariant self-organizing map that is suitable for many analysis
tasks in astronomy. We show how to reduce the computational complexity
via modern GPUs and apply the resulting framework to galaxy data for
morphological analysis.

1 Introduction

For modern astronomical surveys like the Sloan Digital Sky Survey (SDSS ) [1],
volunteers have manually performed various tasks quite successfully (e.g., classi-
fication). Within the Galaxy Zoo project [2], about 100k volunteers performed a
morphological analysis of roughly one million galaxies. However, the projected
increase in the number of objects for the next generation of all-sky survey mis-
sions renders such a manual inspection impossible. Furthermore, the labelling
process may introduce biases, as the volunteers often lack the required scien-
tific background. As crowd-sourcing project are designed for specific tasks, new
scientific questions will require new crowd-sourcing projects. Therefore novel
explorative analysis methods are required.We promote a semi-automatic data
analysis scheme that combines unsupervised learning with the visual recognition
capabilities, the creativity, and keen perception of the human brain.1

Computers are ideal in pre-processing and pre-analyzing data. We aim for
assisting astronomers by making the fully manual analysis via crowd-sourcing
projects obsolete. By combining similar and frequent objects via machine learn-
ing models, we can retrieve single representatives and thus reduce the number
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1A preliminary version of this work not containing the GPU implementation and restricted
to single-channel image data has been presented [3].

405

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



of objects that require a manual inspection. The goal of this work is to enable
astronomers to efficiently perform a morphological analysis on huge amounts of
pre-analyzed data (e.g., images or radio-synthesis data).

In astronomy, morphological features are usually extracted and a simple
model is used for classification [4]. Recently, a supervised classification of galaxy
shapes based on convolutional neural networks has been proposed [5]. Even
though the presented approach is very creative and novel to an application in
astronomy, it suffers from the strong biases given in the training data. Unsuper-
vised methods could help to understand the data and to create a better reference
sample for supervised processing. In the past, dimensionality reduction tech-
niques that compute topological maps, i.e., latent embeddings, have shown good
results [6]. Those techniques aim at projecting complex, high-dimensional data
to a low-dimensional presentation while preserving similarities and neighborhood
relations between the original data points. We present a rotation and flipping
invariant similarity measure and resort to self-organizing maps (SOM ) [7] to
obtain a visual representation of the data. Since the used similarity measure is
computationally very expensive, we make use of an efficient parallel implemen-
tation that can take advantage of both, modern multi-core CPU systems as well
as massively-parallel GPU -based environments.

2 Method

We present the Parallelized rotation/flipping INvariant Kohonen map (PINK [3])
framework that generates a compact visualization in an unsupervised way and,
thus, permits a semi-automatic analysis of the data by an expert. SOMs are a
simple yet effective dimensionality reduction technique, which are a specialized
form of neural networks where every fixed node/neuron p ∈ P of the latent space
contains a derived prototype after having trained the model.

2.1 Kohonen Maps

As SOMs are easy to implement it was possible to develop an implementation
for our use-case that runs very efficiently in a parallel environment. We provide
a quick overview of SOMs in order to understand the efforts undertaken to
speed-up the calculations. The neurons P = {pj = (wj , cj) | wj ∈ IRd, cj ∈
IN2, j = 1, . . . , μP } map every prototype or weight-vector wj to a coordinate
cj in the map. Therefore the trained maps provide both, a data compression
via prototypes as well as a spatial ordering based on similarity. In the training
phase, the n patterns yi ∈ IRd with i = 1, . . . , n are iteratively applied to the
map. By calculating a similarity measure Δ(y,wj) between a pattern y ∈ IRd

and the weight wj ∈ IRd for every node pj ∈ P of the map, the closest (winning)
neuron q(y) = argminj=1,...,µP

Δ(y,wj) is determined. In our case Δ(y,wj) is
calculated in a rotation invariant way (see Section 2.2). Then the neurons are
updated based on the distance to the winning neuron in the map d(cq(y), cj)
and the number of applied iterations t via a training function f(d(cq(y), cj), t).
This is done by updating the weight-vector wj of a neuron pj to the new value
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w′
j = wj + (ψ(j)(y)−wj) · f(d(cq(y), cj), t), where ψ(j) is the identity function

in the standard Kohonen-map algorithm and will be used here to align the
coordinate systems of y and wj . From this formal description it is obvious,
that the ordering, the amount of objects of a certain class, the chosen training
function, and the number of iterations have a significant impact on the result.
This is a weakness of SOMs one always should keep in mind when inspecting
the results.

2.2 Similarity Measure

As described above, the training of the SOM depends on the similarity measure
Δ(y,wj) between the image y and the weights wj of the neuron pj . Humans
can easily scale, align, distort, and interpolate images and are very powerful in
checking similarities. Pre-processing the images to align them to the principal
axis of their main component and using a simple pixel-wise Euclidean distance
was one of the first approaches to deal with rotation. In the past, we carried out
multiple tests with rotation invariant similarity measures with the best results
achieved via Fourier transformed circular slices of the images [8]. For the imaging
data at hand, a rotation and flipping invariant similarity measure is essential to
achieve satisfying results. All images had been centered and scaled in a pre-
processing step to make them invariant against this kind of deviation.

To calculate the similarity, we basically calculate the Euclidean distances for
all possible rotations/flipped objects in the map to determine the best match. It
can be shown that this operation still gives rise to a valid distance metric: Let
Δ(A,B) = min{d(A, φ(B)) |φ ∈ Φ} and Φ = {φ1, . . . , φN} be a set of image
transformations φi : X �→ X in the space of the images X. We assume that
[I] d is a metric on X, [II] Φ forms an Abelian group, and [III] for any φ ∈ Φ,
d(φ(A), φ(B)) = d(A,B). The idea of the proof is that Δ is a metric on X/∼,
where A ∼ B if A = φ(B) for some φ ∈ Φ. Identity is obvious while symmetry is
based on the symmetry of d and assumption [III]. Triangular inequality is shown
via Δ(A,C) + Δ(C,B) = d(A, φa(C)) + d(C, φb(B)) ≤ d(A, φa ◦ φb(B)) =
Δ(A,B).

2.3 Implementation

Our PINK implementation supports the use of a Gaussian or a Mexican hat as
the distance component and makes use of a simple linear damping based on the
number of iterations t. Other distance components as well as iteration-dependent
functions can be easily added. The framework allows to train quadratic as well
as hexagonal maps, both in a continuous repeating or edge-limited version. The
hexagonal shape has six instead of just four distinct directions and just allows
for integer distances. With the quadratic alignment, even three dimensional
cube-shaped projections can be generated. In addition to the map shape, the
ability to deal with multi-band image cubes was implemented. After the training
phase is finished, the images y are matched to the derived prototypes P . By
inspecting and annotating those prototypes, a scientist is able to classify all
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matching objects at once. Therefore the amount of objects to be inspected is
reduced to the number of prototypes in the map.

2.4 Speed-up via Parallelization

Since the considered brute-force comparisons between an image y and all the
neurons P are computationally very demanding, this task is an ideal candidate
for massively parallel implementations. The training algorithm consists of three
parts: The generation of the rotated and flipped images, the calculation of the
Euclidean distance between every rotated image and neurons, and the update
of the neurons.

Iteratively, all rotated and flipped versions of the image y are created in
parallel by using a set of image transformations Φ = {φ1, . . . , φN}. To avoid
artifacts the rotated images are cropped. The rotation and cropping steps are
combined to reduce the size of the region that has to be calculated. The rotations
between 0◦ and 90◦ were calculated explicitly, while the remaining ones as well
as the flipped versions are generated through simple matrix operations.

Afterwards, the Euclidean distance between each pre-processed image and
the neurons is calculated in parallel. This calculation is the most time-consuming
part while finding the minimum is one single scan and therefore fast. For an
optimal memory access those calculations are split in two steps, as each thread
needs access to just one rotated image. The first step is calculating the summed
Euclidean distance between every neuron and image hierarchically, whereas the
second step is used to determine the minimum value. To speed up the calcula-
tion, a parallel reduction scheme is used that ensures a very efficient accumu-
lation [9] on the used hardware (NVIDIA Tesla K20m) with a blocksize of 256
as optimal local storage size. The usage of multiple GPUs is also implemented
resulting in a poor speedup of about 1.3 using two Tesla K20m because of the
large memory transfer from one device to the other.

The update part of the weights wj is a straightforward implementation per-
formed in parallel. Here, the alignment of the training image y with respect to
the neurons has to be considered via a proper choice of φ. To avoid unneces-
sary if statements for the distance and distribution function within the CUDA
kernel, functors are used as template arguments for a static binding.

3 Experimental Evaluation

To evaluate the performance and usability of our approach, we performed ex-
periments on both, synthetical as well as on astronomical data.

3.1 Data

As the synthetical data was just used to ensure the reproducibility of simple ge-
ometric shapes, only the results on the real-world data are shown. In our exper-
iment we used radio-synthesis data taken from the Radio Galaxy Zoo project.2

2http://radio.galaxyzoo.org
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Description #CPUs #GPUs Time Speed-up
Python Prototype 8 — 17 days —
C Code, Sandy-Bridge 12 — 4h42m40s 87
CUDA Code, Tesla K20m 1 2, 496 40m22s 606
block optimized CUDA Code 1 2, 496 35m22s 689
block optimized CUDA Code 1 2× 2, 496 27m40s 885

Table 1: Performance achieved with different versions of the code on different
hardware when training on 200 k images with 2◦ rotation steps for one iteration.
As a reference for the calculation of the speed-up factor the Python prototype
from the original publication [3] is used.

Regular cutouts with 128 px × 128 px were used to create rotated versions of
86 px × 86 px without having non-valid pixels in the corners. In addition, the
intensities of the images were normalized to [0, 1] and every pixel value below a
2σ level w.r.t. the background noise was masked as background and set to zero.
Finally, a hexagonal map was trained with the pre-processed data.

3.2 Results

The duration of the training with the 200 k images from Radio Galaxy Zoo was
used for benchmarking. In Table 1 a comparison between different implemen-
tations is given, indicating that the initial calculation time based on a parallel
Python code could be enormously improved. The map was trained for ten it-

Fig. 1: left: Resulting hexagonal Kohonen-map containing the derived proto-
types. right: Some outlier examples which have been selected based on the
quality of their fit to the prototypes in the map (blue denotes similar, red dis-
similar nodes). The corresponding heatmaps indicate potential prototypes they
could belong to, even though they are not as well represented as the majority of
objects.
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erations. Already after four iterations no obvious changes had been observed
when comparing the regular snapshots after 10, 000 images with each other. In
the end we retrieved the map presented in Figure 1 left . The prototypes of
the resulting map allow a clear separation into different morphological classes.
Based on the mapping induced by the prototypes, it is possible to transfer the
annotations created for the map directly to every individual image. Objects
that are not well represented by the prototypes can be filtered out based on
the absolute similarity value of the best match. They can be considered as in-
teresting objects that might require additional manual inspection by an expert.
In Figure 1 right , some of these automatically determined outliers are shown.
A manual inspection of all extracted outliers reveals solely objects exhibiting
interesting morphological features.

4 Conclusion

The proposed method shows that unsupervised dimension reduction techniques
can help astronomers to analyze huge amounts of data. Besides retrieving a
classification scheme, one is able to efficiently detect outliers. Those are the
objects which need to be analyzed by an expert. The majority of similar objects
just needs to be inspected on the basis of a few representatives. This enables
astronomers to deal with the upcoming large imaging surveys.
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