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Abstract. We develop a reinforcement-learning algorithm to construct
a feedback policy that delivers quantum-enhanced interferometric-phase
estimation up to 100 photons in a noisy environment. We ensure scala-
bility of the calculations by distributing the workload in a cluster and by
vectorizing time-critical operations. We also improve running time by in-
troducing accept-reject criteria to terminate calculation when a successful
result is reached. Furthermore, we make the learning algorithm robust
to noise by fine-tuning how the objective function is evaluated. The re-
sults show the importance and relevance of well-designed classical machine
learning algorithms in quantum physics problems.

1 Introduction

Quantum-enhanced metrology aims to estimate an unknown parameter φ with
the goal of overcoming the standard quantum limit (SQL), which is ∆φ ∝
N−0.5 [1] where N is the number of particles used in the measurement. Quantum
states can be used to achieve power-law scaling better than -0.5. In particular, we
consider adaptive quantum-enhanced metrology, which performs sequential mea-
surements on a sequence of N single-particle pulses. After each measurement,
an automatic system adjusts a controllable parameter Φ, affecting the outcome
of the subsequent measurements. The use of multi-particle entanglement allows
the measurement to overcome the independent and identical distribution condi-
tion and consequently the SQL. The advantage of using this approach is that
the technology for single particle detection is readily available and so make the
approach feasible to implement. The challenge of adaptive quantum-enhanced
metrology is in generating a feedback policy that can achieve the enhanced pre-
cision. To this end, we develop a learning algorithm that can be applied to
problems that include noise present in physical systems.
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Reinforcement learning is gaining attention in quantum physics problems.
Examples include an agent-based model in measurement-based quantum com-
putation [2], mapping quantum gates on a spin system [3], optimization in ultra-
cold-atom experiments [4], and earlier work on the adaptive quantum phase esti-
mation problem using heuristic optimization [5, 6]. These previous works showed
promising results, especially when relying on differential evolution (DE), but DE
is unable to deliver a successful policy when noise is included. Another algorithm
using particle swarm optimization (PSO) succeeds under noisy conditions but
breaks down in precision scaling after 45 particles even in the absence of noise.

The DE-based algorithm also exhibits this breakdown but at over 90 particles,
which means that DE-based algorithm outperforms PSO by a factor of two with
respect to the number of particles. Building on the DE-based reinforcement-
learning algorithm, we advance the state of the art in two ways: (1) We develop
a scheme that can operate when practical imperfections such as noise and loss are
included. The primary means to this is the way in which the objective function
is evaluated. (2) We improve scalability to a higher number of particles. This
is achieved by accept-reject criteria that allow an early or a late termination of
calculations. Furthermore, we vectorize the time-critical operations to efficiently
use the parallel resources available in contemporary CPUs and GPUs.

2 Generating feedback policy as a learning problem

We consider the problem of optical interferometric-phase estimation, which is
well-studied due to its connection to many problems in physics, such as the
gravitational wave detection [7, 8]. The interferometer has two input and two
output modes. The N -photon entangled state is injected into the interferometer
one photon at a time. Neglecting loss, the photon comes out from either of the
output modes with a probability that depends on φ − Φ. Our interferometer
model allows Gaussian noise on the phase shift. We label the outcome by u ∈
{0, 1}, where 0 refers to the photon exiting the first port and 1 to the photon
exiting the second port. The sequence of outcomes from the first to the mth

photon is given by um. The path from which a photon exits provides information
to determine the adjustment of Φ for the next round of measurement. Once all
photons are expended, the estimate of φ is inferred from Φ.

We now explain how to construct the feedback policy, which is a set of rules
that determines how Φ is adjusted. In the mth round of measurement, the
policy is a function of the sequence of previous outcomes um−1 ∈ {0, 1}m−1.
This is better understood by representing a policy as a binary decision tree.
An advantage of using this representation is that the size of a policy is readily
determined and its size scales as 2N − 1. To make searching for the policy
tractable, we impose a rule that Φm = Φm−1 +(−1)um∆m, thereby reducing the
policy from a full decision tree to a vector % = (∆1, . . . ,∆N ). The search space
becomes an N -dimensional, real, continuous space bounded in each dimension
by [0, 2π).

As the measurement outcomes um is a string of discrete random variables,
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the estimate of phase from this scheme is also discrete. The increase in N
allows us to obtain increasingly precise estimate. We determine the imprecision
of the measurement using the Holevo variance VH(θ) = S(θ)−2 − 1, where the

distribution sharpness function S(θ) =

∣∣∣∣ K∑
k=1

eiθk
K

∣∣∣∣ and θ = φ − Φ. The number

K = 10N2 indicates the size of the sample set, a set which is also used as training
data for the learning algorithm. We uniformly sample the value of φ from [0, 2π)
in the training stage to generate both % and its corresponding imprecision. The
sharpness function S serves as the objective function.

The photons are modelled to have a small probability η of being lost before
entering the interferometer, and the automatic system is instructed to do nothing
in the absence of a detection signal. We assume small loss in which case we
optimize without loss but test the performance accounting for loss. If the test of
the policy under lossy conditions fails, we return to the optimization algorithm
to come up with a better policy and test this policy under lossy condition. If
the test succeeds, we adopt the policy; if the test fail, we repeat.

3 Noise-Resistant Global Optimization Heuristics

Due to DE’s ability to find successful policies in a high-dimensional search
space [9], we employ DE for the problem of noisy phase estimation for N up to
100 and observe that DE does not perform as well as PSO. In fact, the algorithm
fails to deliver better than SQL scaling altogether. To devise a noise-resistant
global optimization algorithm for our scheme, we use the mean value S̄ instead
of S to determine the performance of a policy. This strategy is one of the many
strategies proposed in the literature to create noise-resistant DE [10, 11] and is
found to work best for our problem.

The principle behind the use of mean objective value is as follows: if noise is
added to the fitness function, the process of averaging recovers the true objective
value. The optimization using this value is therefore a close approximation to
the noiseless optimization. The major drawback of this approach is that comput-
ing the objective function multiple times makes the procedure computationally
expensive. Therefore, determining the smallest sample size of {S} necessary to
recover S is crucial. To this end, we employ the heuristic applied to PSO in
the previous work [5]. The method updates S̄ by computing one new sample
of S every iteration until a better offspring is generated. As the candidates
approaches the optimal value, the probability of generating an offspring that is
better than the parent decreases, and as a result the sample size for evaluating
S̄ increases. Therefore, this method leads to a dynamic selection of sample size.
The computational resources is allocated towards candidates that are close to
optimal in order to obtain accurate estimations of their fitness values.

Although noise added to the phase shift is not additive in S due to the
exponential dependence, exceeding SQL is possible because computing S̄ from
G samples is equal to computing a single S using sample size GK, thereby
providing a better estimate of imprecision than for the sample size of K.
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4 Improving Scalability

In order for the optimization algorithm to find a solution in a search space
that scales up to 100 dimensions, we implement a set of heuristics and criteria
to ensure that only successful policies are accepted. Previously the algorithm
accepted a policy after a fixed number of iterations regardless of whether the
population converge. However, as the dimension of the search space increases,
so does the time for the population to converge. Eventually, the algorithm fails
to deliver a policy that passes the test.

The issue of increasing convergence time with the increase in search-space
dimension manifested as the stagnation in imprecision for N > 90. We change
the criterion for accepting a policy from a fixed number of iterations to only if
VH is within a distance corresponding to a confidence interval of 0.98 from the
inverse power-law line. Thus, we guarantee that the policy from our algorithm
always delivers a power-law scaling better than SQL.

In order to calculate the acceptable error, we collect the VH values from N =
{4, 5, dots, 93} to determine the linear equation that describe the relationship
between log VH(N) and logN , which should be linear given a power-law between
VH and N . Using this linear relationship, we can predict the next data point
and calculate the acceptable error using a formula from statistics, namely

δy = t∗n′−2

√√√√∑n′

i=1(y′i − yi)2
n′ − 2

(
1

n′
+

(x′ − x̄)2∑n′

i=1(xi − x̄)2

)
, (1)

where n′ is the number of data points, i = {1, 2, . . . , n′}, and y′i is the value of
log VH as predicted by the linear equation. Here yi = log VH(Ni) and xi = logNi

whereas x′ corresponds to the value of N for which the error is calculated.
The value t∗n′−2 is the quantile on the Student’s t distribution for n′ − 2 data
points, which we approximate using a normal distribution. The difference be-
tween log VH(N) from the simulation and the predicted data point is computed.
If the difference is smaller than δy, we accept the policy. Otherwise, the opti-
mization continues.

The computational complexity of the algorithm is polynomial, but it has a
high degree, and therefore it is important to identify the performance critical
parts of the implementation. Profiling the code, we identify that over 90% of
the execution time is spent on generating random numbers, which are primarily
used in calculating the Holevo variance. Generating random numbers as they
are needed, one by one, is not efficient on contemporary hardware, as the opera-
tions can be vectorized to use the single-instruction multiple-data architectures
of the central and the graphics processing units. Abstracting the random num-
ber generation routines and introducing a buffer, we are able to vectorize the
respective operations. We study two approaches: one relies on the CPU, us-
ing the Intel Vector Statistical Library (VSL), the other on graphics processing
units. Eventually the VSL-based vectorized solution prove to be more scalable.

The noise-resistant DE variant works as follows.
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Fig. 1: Log of Holevo variance from adaptive interferometric-phase estimation.

Step 1 Initialize the population of size NP randomly.
Step 2 Evaluate the objective function for each candidate twice, and store
the mean objective value and the sample size.
Step 3 Generate a donor for each of candidate Vi(t), where t is the iter-
ative time step, from three other candidates {Vi,1(t), Vi,2(t), Vi,3(t)} chosen
randomly using the rule

Di(t) =

{
Vi,1(t) + F (Vi,2(t)− Vi,2(t)) if rand ≤ Cr,
Vi(t) else,

(2)

where Cr ∈ [0, 1] is the crossover rate, and rand ∈ [0, 1] is a random number.
Step 4 Evaluate the mean objective value for each of the new candidates from
two samples.
Step 5 Compare new and the old candidate using the mean objective value

Vi(t+ 1) =

{
Di(t) if f̄(Di(t)) > f̄(Vi(t)),
Vi(t) else,

(3)

where f̄() reads the mean objective value in the memory.
Step 6 Evaluate the objecting function once, and update the mean value and
the sample size.
Step 7 Repeat step 3 to 6 until the criterion to terminate the algorithm is
met.
Step 8 Compute the objective value of the entire population for 10 more
times before selecting the candidate with the highest mean objective value as
the solution.

5 Results

The scaling of the Holevo variance is VH ∝ N−1.421 when width of the Gaussian
distribution is 0.2 rad and the probability of losing a photon is 0.2. This exceeds
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the scaling of N−1 expected from SQL. Policies that are found using stochas-
tic hill climbing breakdown at 20 photons, and noise-resistant PSO shows the
breakdown at 45 photons. Using noise-resistant DE with accept-reject criteria,
the scaling continues up to 100 photons (Figure 1).

The limitation at 100 photons is due to the computational time and the
rounding error in the generation of large multi-particle entangled state. The
time required to find a policy under accept-reject criteria from 94 to 100 photons
are between 1.5 to 3 hours per data point.

6 Conclusion

We have devised a reinforcement-learning algorithm that generates feedback
policies for adaptive phase estimation including noise and loss. We are able
to achieve enhanced precision better than SQL up to 100 photons using noise-
resistant variant of DE and accept-reject criteria. This work can be used as
the basis to develop learning algorithms for solving more complex estimation
problems, such as estimating more than one unknown parameters, which has an
application in the characterization of quantum information processing devices.
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