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Abstract. In this paper we present our experiments with an echo state
network (ESN) for the task of classifying high-level human activities from
video data. ESNs are recurrent neural networks which are biologically
plausible, fast to train and they perform well in processing arbitrary se-
quential data. We focus on the integration of body motion with the infor-
mation on objects manipulated during the activity, in order to overcome
the visual ambiguities introduced by the processing of articulated body
motion. We investigate the outputs learned and the accuracy of classifica-
tion obtained with ESNs by using a challenging dataset of long high-level
activities. We finally report the results achieved on this dataset.

1 Introduction

The importance of recognizing articulated human activities is exhibited in a
wide range of computer vision applications such as surveillance and multimedia
retrieval and complex robotic applications such as human-robot communica-
tion and learning from demonstration. High-level human activities processed by
computer vision are temporal sequences including a number of simple atomic
actions such as standing, walking, reaching for an object, picking up an object
etc. The major challenges faced when dealing with activity recognition tasks
are the large variability of style and velocity of execution with which actions
are performed by different subjects [1]. Therefore, recent studies [2, 3, 4, 6] are
concentrating their efforts on integrating additional contextual cues (e.g. manip-
ulated objects, spatial analysis of the scene etc.) with the body motion and pose
information in order to enhance performance and reliability of the recognition
despite highly probable visual ambiguities. While these approaches make use of
machine learning algorithms for classification, we aim at investigating applica-
tions of bio-inspired methods based on recurrent neural networks (RNN), given
the high efficiency of the mammalian brain in processing temporal data. The
echo state networks (ESN)[8] are novel recurrent networks that have demon-
strated advantages over traditional RNN due to their simplicity, computational
efficiency and promising results in demanding tasks such as language acquisition
[10]. Moreover they are suitable for both online and offline learning and their
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biological plausibility has caught the interest of studies on modelling canonical
neural circuits of primate prefrontal cortex [11].

Our work focuses on the study and evaluation of the performance of ESNs
for the task of activity recognition, by using a challenging benchmark dataset
of RGB-D videos, Cornell Activity Dataset-120 (CAD-120)1. We are mainly
interested in the use of depth, which leads to robustness under varying light
conditions and differing viewpoints of observation and reduced computational
costs [12]. We have set up experiments seeking to investigate the outputs ob-
tained with an ESN having as input three dimensional coordinates of articulated
body skeleton joints as well as category labels of objects being manipulated by
the subject during the activity. In Section 2 we describe the ESN algorithm im-
plemented for our experiments. In Section 3 the set-up of the experiments and
implementation details are reported and in Section 4 we provide experimental
results and comparison to the state-of-the-art recognition rates for the CAD-120
dataset.

2 Echo State Networks

We implemented ESNs with leaky integrator neurons. The state of the reservoir
units is driven by the n-dimensional input sequences ut where t is the time step,
and updates of the states are computed through the following equation:

xt+1 = (1− α)xt + α tanh(W in[1; ut+1] +W resxt), (1)

where xt is the state of the reservoir neurons at time step t, tanh(.) is the
activation function applied element-wise, W res is the reservoir weight matrix,
W in is the input weight matrix and α is the leaking rate. The learning of
the output weights W out is typically performed through ridge regression with
Tikhonov regularization:

W out = Y targetXT (XXT + βI)−1, (2)

where Y target are the desired outputs, X is the matrix of reservoir state se-
quences, β is a regularization parameter and I is the identity matrix. After the
training, the computed outputs yt are obtained using:

yt =W out[1; ut; xt], (3)

where W out are the weights of connections between readout units and the reser-
voir and input units plus the constant bias.

3 Experiments

All experiments were carried out using CAD-120 benchmark dataset, which com-
prises RGB-D videos of 10 long daily activities: arranging objects, cleaning ob-
jects, having meal, making cereal, microwaving food, picking objects, stacking

1Cornell Activity Dataset-120. http://pr.cs.cornell.edu/humanactivities/data.php
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(a) modeljo (b) modelj

Fig. 1: Two separate experiments run with two echo state networks: (a) object
labels ol are fed in input to the reservoir together with the skeleton joints co-
ordinates mt; (b) object labels ol are kept out of the reservoir state sequence
computations and used only for learning output weights W out.

objects, taking food, taking medicine, unstacking objects. The activities are per-
formed by 4 different subjects repeating each action three to four times. The
dataset provides three dimensional coordinates of 15 joints and ground-truth
category labels of manipulated objects for each activity. We used the whole
skeletal data including erroneous sequences taking advantage of the robustness
of ESN towards noisy real world inputs [9].

The simplest way to incorporate the objects’ information (i.e. presence and
type of object) into the problem is by directly giving ground-truth labels as input
to the ESN model. The number and type of objects vary between different ac-
tivities as well as for each activity repetition. Therefore, in order to have a fixed
dimension input data, we encoded the object labels using one-of-k-encoding,
i.e. all elements were set to 0 except the one with the index corresponding to
the object category. The matrix of skeleton joints coordinates was normalized
in the range [−1, 1] for each activity sequence. The vector of object labels ol
was concatenated with the vector of skeleton joints coordinates mt at each time
step t = 1, . . . , T obtaining the augmented input vector ûit = [1; ol;mt], where 1
represents the bias term.

We tested two models with different set-ups of inputs (see Figure 1): (i)
full connection between augmented inputs and the reservoir neurons, and (ii)
zero weights for connections between ol and the reservoir neurons. While in the
former case the object labels influence the reservoir internal representations, in
the latter case they are used only for training the output weights W out. Matrix
weights of W in and W res were initialized randomly with a uniform distribution
in [-0.5, 0.5]. Since our task is multi-label classification of long sequences and
the teacher signal is given during the whole activity sequence, we performed the
readout of the outputs in three different ways: (i) by recording the activity of
the readout units and averaging over the whole length of the sequence, (ii) by
recording and averaging the activity of the readout units for the last half of the
sequence or (iii) by keeping track of the activity of the readout units at the last
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Fig. 2: Output units activations of the two ESN models during testing on an
unseen subject, modeljo (left column) and modelj (right column). The ground
truth label in all cases is stacking objects. First row: the models interchange
stacking objects with unstacking objects, two activities involving the same ob-
jects and similar body motions. Second row: the models classify correctly the
sequence from a different fold.

time step.
The set of global parameters influencing the dynamics of the ESN, namely

sparsity and spectral radius of W res, sparsity and scaling of W in, the leaking
rate and the ridge regularization parameter were chosen through a Bayesian
optimization search using the hyperopt python toolbox [13]. We fixed the number
of neurons to 30, 50, 100, 300 and optimized the other parameters directly by
maximizing the accuracy in activity recognition. The accuracy was computed
using the 4-fold cross validation found in the literature for the CAD-120 dataset
[2, 6, 5], i.e. the ESN model was trained on videos of 3 subjects and tested
on an unseen subject. This type of cross-validation is quite challenging since
different subjects perform the same action in a different manner. Since even
with the same set of parameters, the performance of ESN fluctuates due to
random initialization of weights W in and W res, we averaged the accuracy over
30 trials run with different random reservoir initializations.

4 Results

Extensive parameters search with hyperopt gave us two different sets of optimal
global parameters for the two models presented in Section 3. For the modeljo,
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where the vector of object labels is fully connected to the reservoir neurons
(Figure 1a) we had size of reservoir of 300 neurons, leaking rate α = 0.02,
spectral radius of the reservoir matrix 0.3 and ridge regularization parameter
β = 5.2 ∗ 10−10. For the modelj, where the vector of object labels is connected
only to the output units (Figure 1b), we had size of reservoir of 300 neurons,
leaking rate α = 0.06, spectral radius 1.2 and ridge parameter β = 7.2 ∗ 10−5.
The spectral radius greater than one is not violating the echo state property in
our case. When using a leaky-ESN (i.e. α < 1), the effective spectral radius,
which should be kept smaller than one, is different than the spectral radius of
W res [7]. The low leaking rate is to be expected in long data sequences as is the
case of CAD-120 dataset, where the length of each sequence varies from ≈ 150
to ≈ 900 frames per video. Across different categories of activity, averaging
readouts of output units over the whole sequence frames gave better results than
the other strategies that we tested (described in Section 3). Examples of outputs
generated by the two models are given in Figure 2 for comparison. We inspected
that the activities interchanged by both models in more than half of the mis-
classifications were the ones including the same category of objects and similar
body motions, e.g. stacking objects and unstacking objects. In fact in these
activities the subject repeats the same sequence of atomic actions: reaching,
moving and placing objects. The classification accuracy of the ESN models using

Algorithm Accuracy% Precision% Recall%
Koppula et al. [2] 80.6 ± 1.1 81.8 ± 2.2 80.0 ± 1.2
Koppula et al. [6] 83.1 ± 3 87.0 ± 3.6 82.7 ± 3.1
Rybok et al. [5] 78.2 * *
ESN modeljo (average) 81.5 ± 6 81.5 ± 7.3 80.9 ± 6.2
ESN modeljo (best) 88.7± 3.6 90.3± 3.3 88.3± 3.7
ESN modelj (average) 80.0 ± 5.7 79.7 ± 9 79.4 ± 5.9
ESN modelj (best) 87.1 ± 0.1 90.3 ± 1.4 86.7 ± 0.0

Table 1: Performance results of different methods on the CAD-120 dataset not
using ground-truth temporal segmentation.

the best global parameters, averaged over 30 random reservoir initializations,
as well as their best runs with one specific reservoir instance are reported in
Table 1. The latter outperform other approaches. The standard deviation of
the average performance has been calculated over all 30 trials and averaged
across four folds used in CAD-120 dataset. The standard deviation of the best
runs has been calculated across the four folds of one trial. A direct comparison
of the results in Table 1 needs some caution though. The approaches mainly
differ in two points: (i) we use directly ground-truth object labels, while other
approaches use visual features extracted from object tracking and detection,
and (ii) the recognition of high-level activities in the other approaches depends
on the successful recognition of shorter sequences of atomic actions called sub-
actvities, while in our approach only high-level activity labels are used. In fact
we assume that by using the information about objects position in the scene and
sub-activity labels, the performance of our ESN models would further increase.
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5 Conclusions and future work

Our study has shown a successful application of ESN models for the task of com-
plex human activity recognition, where combination of articulated body motion
and manipulated objects is required. The accuracy of the implemented models
was evaluated through a challenging benchmark dataset of RGB-D videos com-
prising long sequences of high-level activities. The recognition rates obtained so
far are comparable with the best state of the art and motivate further experi-
ments which can potentially enhance the results, e.g. by using teacher signals for
smaller atomic actions and using a deeper architecture which takes care of learn-
ing skeletal data sequences in order to remove noise caused by tracking errors.
The work presented in this paper provides us with a stepping stone towards
real-time activity recognition, which is a crucial task for several applications
including human-robot interaction.
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