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Abstract. Word-embedding models commonly treat words as unique
symbols, for which a lower-dimensional embedding can be looked up.
These representations generalize poorly with morphologically rich lan-
guages, as vectors for all possible inflections cannot be stored, and words
with the same stem do not share a similar representation. We study al-
ternative representations for words, including one subword-model and two
character-based models. Our methods outperform classical word embed-
dings for a morphologically rich language, Finnish, on tasks requiring so-
phisticated understanding of grammar and context. Our embeddings are
easier to implement than previously proposed methods, and can be used
to form word-representations for any common language processing tasks.

1 Introduction

Most natural language processing tasks start by manipulating word, which raises
the questions: what are words, and how should they be represented? Recently,
words have been represented as multi-dimensional embeddings where between-
word commonalities can be inferred from the vector-representations. This rep-
resentation has helped practitioners to get excellent results in word-labeling [1]
and other language processing tasks.

While embedding models have been successful with languages such as En-
glish, challenges arise with languages where words have multiple surface forms.
Out-of-vocabulary rates become unacceptably high, and word-based language
modelling fails for many inflectional languages [2]. Long language-processing
pipelines [3] are often required, and tasks such as translation are challenging [4].

To embed words, a number of different alternatives have been developed.
Word-based embedding models consider unique strings as individual

tokens. To create a lookup-table of word-embeddings, one can, for instance,
feed a neural network with a ”one-hot” vector that contains one dimension for
each unique word, and the network can be trained on some relevant tasks. The
weights attached to the input can be interpreted as the vector representation.

Subword-based models can use a similar approach as word-based models,
where representations for sub-parts are looked up, and then combined. This
approach can be competitive to word-based models, and can require significantly
less parameters. This approach have been used for infrequent words [2], to find
representations for discontinuous linguistic units [5], and some have also turned

∗The author wishes to acknowledge Aalto Science-IT project and CSC - IT Center for
Science, Finland, for computational resources.
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to morphemes as the basic unit [6]. Challenges include the decisions: how do we
break the word, and how do we then combine subparts.

Character-by-character transformations start with the basic units of
language, and combine these into more complex representations (e.g. mor-
phemes). A character-based model could work with any language, discovering
the language structure without human intervention. First character-based mod-
els have been applied succesfully to language processing tasks recently [7, 8].

Ideally, a language model would discover invariant units of language indepen-
dently, without complex processing pipelines and training procedures. In this
paper, we introduce an introduce an easy-to-use Stem + ending representation
and we show that a character-level model can rival traditional word-embedding
models for languages with rich morphology. The resulting embeddings can be
used in common language processing tasks.

2 Proposed Embedding Methods

In this section, we describe the embedding models that we have experimented
with. The models are illustrated in Figure 1 1.

Regular embedding. Words are represented as vectors that have one di-
mension for each possible word, with only one active dimension. We limit the
dictionary size to 50k and change other words to token ”RAREWORD”.

Regular, stemmed. As regular embedding, but with each word stemmed.
Stem + ending. A subword model where we break the words into a stem

vector (40k dimensional), concatenated with a vector representing the remaining
part (10k dimensional). We choose this alternative for simplicity: accessing a
standard stemmer is easier than, for instance, using a morphological analyzer or
training a recurrent neural network.

Moving-average. A character-based word-representation would ideally have
small dimensionality, but receive information from all parts of the word. For
languages that inflect at the end, the ending should be strongly present in the
embedding. This motivates us to design a fixed transformation that is essentially
a moving-average calculation. We create a vector, with the length of possible
characters (100 after preprocessing). Starting with the first character in a word,
we choose its corresponding location in the vector and increment this value with
a value proportional to the character’s position in the word, counting from the
beginning. We get a word-representation w = (wa wb . . . wz . . .)

T ,
where

wa =
∑ (1 − α)ca

Z
,

where c is the index of the character at hand (first character=0, second char-
acter=1, etc.), α denotes a hyper-parameter controlling the decay, and Z is a
normalizer proportional to word length. This gives larger weights to characters

1Several other models could have been tested but have been omitted from this research.
Other interesting representations could include a morpheme-based subword-model, and various
complex character-based transformations, such as convolutional and recurrent neural networks.
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at the beginning of a word, and smaller weights to later characters. We also
concatenate to the vector this transformation backwards. and add a vector of
character counts, resulting to a dimensionality of 300.

Regular + moving-average. Regular concatenated with moving-average.
Learnt character-based. To test how well a learnt character-by-character

transformation works, aiming for simplicity, we implement an MLP network.
This network works similarly to the word-embedding, but on a character-by-
character level. Each character is converted to a vector with the dimensionality
of possible characters. The resulting character-vectors are concatenated to form
a word-vector. We pad short words and cut longer words than 25 characters,
resulting to dimensionality of 2.5k.

Moving average 

Char 1 

         2 

         3 

         4 

         5 

         6 

         7 

         … 

Regular embedding 

Dict word 1 

                  2 

                  3 

                  4 

                  5 

                  6 

                  7 

                 … 

Learnt, character-based 

Pos 1, char 1 

                   2 

                  … 

Pos 2, char 1 

                   2 

                   … 

… 

Stem + ending 

Dict1, stem 1 

                    2 

                   … 

Dict 2, ending 1 

                        2 

                        … 

 

Fig. 1: Input Alternatives

3 Experiment Tasks and Data

Collobert et al. [1] use unsupervised learning and learn useful representations
for a number of linguistic tasks. Taking inspiration from this setup, our task is
a binary prediction for a word sequence on whether this sequence is real text
(1), or grammatically or semantically questionable (0). To generate examples
for this task, we choose from each sentence a window of seven words 2.

In the Random Word Task, we generate the randomly chosen negative exam-
ples by changing the middle word to a word drawn randomly from the set of all
possible words, with the probability of each word proportional to its occurrence
in the training set. A (stemmed) example is shown in Figure 2. In the Inflected
Word Task, we choose the negative examples by changing a word with a word
that has the same stem, but a different surface form. For instance, ”dog” could
be replaced with ”dogs”.

For our experiments with English text, we download the Simple English
Wikipedia (1.2m sentences). For morphologically rich text, we use Selkosanomat,
a newspaper written in simple Finnish (80k sentences) and the Finnish Wikipedia
(1m sentences). We do some preprocessing steps, shuffle our sentences and

2In early experiments, we get best accuracies with window-size seven. Our choice of neural
network architecture requires fixed word-windows, so we pad shorter lines.
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Original There	is	a	great	deal	of	variance	in	color	...

Pos.	example there	is	a	great	deal	of	varianc

Neg.	example there	is	a	politician	deal	of	varianc

Fig. 2: Example of Random Word Task

pick word-windows uniformly at random from sentences. The data is split into
training, validation and test, errors being reported on the test set.

4 Experiments

To keep our analysis focused on the input representation, we use a simple neural
network model (see Figure 3.). We feed pre-processed word-windows to a net-
work that starts by converting each word to a vector-representation, using one
of the transformations described in the previous section. These word-vectors
are fed to a word-specific MLP-layer, where each vector is processed (MLPs at
different sentence position share here same weights). We concatenate the result-
ing vectors into one word-window vector, feed this to another MLP-layer, and a
Softmax classifies the text as real or random.

C

Word-vectors

Word-window

Classification

w7

Window-vector

Concatenation

Transformation

Legend

C

…

…

w1 …

MLP-layer

S Softmax

S

Real / false window

T

T

w2

C

T

…

Fig. 3: Network Architecture

Before experiments, we optimize the network’s hyper-parameters 3 for accu-
racy using a smaller English dataset of simple English.

In all our tasks, the problem is to distinguish a false word-window from a
real one, with baseline accuracy of 50%. Our results are summarized in tables 1
and 2. For most interesting results, we perform training five times with different
random seeds, showing average accuracies and standard deviations in brackets
4.

3We use one word-specific neural layer (250 neurons) and one word-window-specific layer
(250 neurons), both with rectified linear units, and train for 20 epochs.

4To avoid penalizing overfitting experiments, we show best end-of-epoch accuracy. Some
learnt character-based experiments omitted as results were poor already with small dataset.
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Table 1: Random Word Task Results

Finnish
Wiki

Selkosanomat Simple-EN
Wiki

Regular 0.204 0.281 (0.028) 0.142
Regular, stemmed 0.225 0.247 (0.070) 0.166
Stem + ending 0.142 (0.020) 0.104 (0.042) 0.188
Moving-average 0.244 0.250 0.174
Regular + moving-average 0.232 0.244 0.208
Learnt character-based na 0.302 0.268

Table 2: Inflected Word Task Results

Finnish Wiki Selkosanomat

Regular 0.268 (0.012) 0.260 (0.024)
Regular, stemmed 0.5* 0.5*
Stem + ending 0.244 (0.019) 0.269 (0.022)
Moving-average 0.230 (0.023) 0.266 (0.022)
Regular + moving-average 0.244 0.232
Learnt character-based na 0.352

* Not sensible: correct and random examples get same form after stemming.

Our embeddings are clearly advantageous for Finnish datasets. The models of
Stem + ending, Moving-average and Regular + moving-average each outperform
regular word-embeddings in different tasks. Stem + ending model outperforms
the regular embedding, showing that splitting words of morphologically rich
languages into subparts can have significant advantages. The performance of
character-based models is also interesting, as character-based models have often
not been able to rival word-based models, and as they can use a significantly
smaller number of parameters (5 ∗ 105 instead of 107 ).

A visualization of word endings (Figure 4) indicates that the vector repre-
sentations of word endings are highly meaningful. Endings ella, ellä, llä and ällä
tend to be all variations of a certain inflection, relate to being at something.
Endings with a replaced with ä tend to also always represent the same meaning,
only in the context of different word. The istä and asta translate both to from.
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Fig. 4: Ending Vectors, Projected with t-SNE

5 Conclusion

Our work shows that subword and character-based models can rival regular word-
embeddings for a morphologically rich language. Stem + ending vectors improve
results for many language processing tasks and are very easy to implement. Also
character-based models achieve good results, outperforming regular embeddings
on certain tasks. Constructing a character-level neural network that automat-
ically discovers meaningful units appears to be a promising research direction,
and recent work parallel to ours (e.g. [9]) has started exploring this approach.
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