
Word Embeddings for Morphologically Rich
Languages

Pyry Takala ∗

Aalto University - Department of Computer Science
PL11000, 00076 Aalto - Finland

Abstract. Word-embedding models commonly treat words as unique
symbols, for which a lower-dimensional embedding can be looked up.
These representations generalize poorly with morphologically rich lan-
guages, as vectors for all possible inflections cannot be stored, and words
with the same stem do not share a similar representation. We study al-
ternative representations for words, including one subword-model and two
character-based models. Our methods outperform classical word embed-
dings for a morphologically rich language, Finnish, on tasks requiring so-
phisticated understanding of grammar and context. Our embeddings are
easier to implement than previously proposed methods, and can be used
to form word-representations for any common language processing tasks.

1 Introduction

Most natural language processing tasks start by manipulating word, which raises
the questions: what are words, and how should they be represented? Recently,
words have been represented as multi-dimensional embeddings where between-
word commonalities can be inferred from the vector-representations. This rep-
resentation has helped practitioners to get excellent results in word-labeling [1]
and other language processing tasks.

While embedding models have been successful with languages such as En-
glish, challenges arise with languages where words have multiple surface forms.
Out-of-vocabulary rates become unacceptably high, and word-based language
modelling fails for many inflectional languages [2]. Long language-processing
pipelines [3] are often required, and tasks such as translation are challenging [4].

To embed words, a number of different alternatives have been developed.
Word-based embedding models consider unique strings as individual

tokens. To create a lookup-table of word-embeddings, one can, for instance,
feed a neural network with a ”one-hot” vector that contains one dimension for
each unique word, and the network can be trained on some relevant tasks. The
weights attached to the input can be interpreted as the vector representation.

Subword-based models can use a similar approach as word-based models,
where representations for sub-parts are looked up, and then combined. This
approach can be competitive to word-based models, and can require significantly
less parameters. This approach have been used for infrequent words [2], to find
representations for discontinuous linguistic units [5], and some have also turned

∗The author wishes to acknowledge Aalto Science-IT project and CSC - IT Center for
Science, Finland, for computational resources.

177

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

to morphemes as the basic unit [6]. Challenges include the decisions: how do we
break the word, and how do we then combine subparts.

Character-by-character transformations start with the basic units of
language, and combine these into more complex representations (e.g. mor-
phemes). A character-based model could work with any language, discovering
the language structure without human intervention. First character-based mod-
els have been applied succesfully to language processing tasks recently [7, 8].

Ideally, a language model would discover invariant units of language indepen-
dently, without complex processing pipelines and training procedures. In this
paper, we introduce an introduce an easy-to-use Stem + ending representation
and we show that a character-level model can rival traditional word-embedding
models for languages with rich morphology. The resulting embeddings can be
used in common language processing tasks.

2 Proposed Embedding Methods

In this section, we describe the embedding models that we have experimented
with. The models are illustrated in Figure 1 1.

Regular embedding. Words are represented as vectors that have one di-
mension for each possible word, with only one active dimension. We limit the
dictionary size to 50k and change other words to token ”RAREWORD”.

Regular, stemmed. As regular embedding, but with each word stemmed.
Stem + ending. A subword model where we break the words into a stem

vector (40k dimensional), concatenated with a vector representing the remaining
part (10k dimensional). We choose this alternative for simplicity: accessing a
standard stemmer is easier than, for instance, using a morphological analyzer or
training a recurrent neural network.

Moving-average. A character-based word-representation would ideally have
small dimensionality, but receive information from all parts of the word. For
languages that inflect at the end, the ending should be strongly present in the
embedding. This motivates us to design a fixed transformation that is essentially
a moving-average calculation. We create a vector, with the length of possible
characters (100 after preprocessing). Starting with the first character in a word,
we choose its corresponding location in the vector and increment this value with
a value proportional to the character’s position in the word, counting from the
beginning. We get a word-representation w = (wa wb . . . wz . . .)

T ,
where

wa =
∑ (1 − α)ca

Z
,

where c is the index of the character at hand (first character=0, second char-
acter=1, etc.), α denotes a hyper-parameter controlling the decay, and Z is a
normalizer proportional to word length. This gives larger weights to characters

1Several other models could have been tested but have been omitted from this research.
Other interesting representations could include a morpheme-based subword-model, and various
complex character-based transformations, such as convolutional and recurrent neural networks.

178

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

at the beginning of a word, and smaller weights to later characters. We also
concatenate to the vector this transformation backwards. and add a vector of
character counts, resulting to a dimensionality of 300.

Regular + moving-average. Regular concatenated with moving-average.
Learnt character-based. To test how well a learnt character-by-character

transformation works, aiming for simplicity, we implement an MLP network.
This network works similarly to the word-embedding, but on a character-by-
character level. Each character is converted to a vector with the dimensionality
of possible characters. The resulting character-vectors are concatenated to form
a word-vector. We pad short words and cut longer words than 25 characters,
resulting to dimensionality of 2.5k.

Moving average

Char 1

 2

 3

 4

 5

 6

 7

 …

Regular embedding

Dict word 1

 2

 3

 4

 5

 6

 7

 …

Learnt, character-based

Pos 1, char 1

 2

 …

Pos 2, char 1

 2

 …

…

Stem + ending

Dict1, stem 1

 2

 …

Dict 2, ending 1

 2

 …

Fig. 1: Input Alternatives

3 Experiment Tasks and Data

Collobert et al. [1] use unsupervised learning and learn useful representations
for a number of linguistic tasks. Taking inspiration from this setup, our task is
a binary prediction for a word sequence on whether this sequence is real text
(1), or grammatically or semantically questionable (0). To generate examples
for this task, we choose from each sentence a window of seven words 2.

In the Random Word Task, we generate the randomly chosen negative exam-
ples by changing the middle word to a word drawn randomly from the set of all
possible words, with the probability of each word proportional to its occurrence
in the training set. A (stemmed) example is shown in Figure 2. In the Inflected
Word Task, we choose the negative examples by changing a word with a word
that has the same stem, but a different surface form. For instance, ”dog” could
be replaced with ”dogs”.

For our experiments with English text, we download the Simple English
Wikipedia (1.2m sentences). For morphologically rich text, we use Selkosanomat,
a newspaper written in simple Finnish (80k sentences) and the Finnish Wikipedia
(1m sentences). We do some preprocessing steps, shuffle our sentences and

2In early experiments, we get best accuracies with window-size seven. Our choice of neural
network architecture requires fixed word-windows, so we pad shorter lines.

179

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Original There	is	a	great	deal	of	variance	in	color	...

Pos.	example there	is	a	great	deal	of	varianc

Neg.	example there	is	a	politician	deal	of	varianc

Fig. 2: Example of Random Word Task

pick word-windows uniformly at random from sentences. The data is split into
training, validation and test, errors being reported on the test set.

4 Experiments

To keep our analysis focused on the input representation, we use a simple neural
network model (see Figure 3.). We feed pre-processed word-windows to a net-
work that starts by converting each word to a vector-representation, using one
of the transformations described in the previous section. These word-vectors
are fed to a word-specific MLP-layer, where each vector is processed (MLPs at
different sentence position share here same weights). We concatenate the result-
ing vectors into one word-window vector, feed this to another MLP-layer, and a
Softmax classifies the text as real or random.

C

Word-vectors

Word-window

Classification

w7

Window-vector

Concatenation

Transformation

Legend

C

…

…

w1 …

MLP-layer

S Softmax

S

Real / false window

T

T

w2

C

T

…

Fig. 3: Network Architecture

Before experiments, we optimize the network’s hyper-parameters 3 for accu-
racy using a smaller English dataset of simple English.

In all our tasks, the problem is to distinguish a false word-window from a
real one, with baseline accuracy of 50%. Our results are summarized in tables 1
and 2. For most interesting results, we perform training five times with different
random seeds, showing average accuracies and standard deviations in brackets
4.

3We use one word-specific neural layer (250 neurons) and one word-window-specific layer
(250 neurons), both with rectified linear units, and train for 20 epochs.

4To avoid penalizing overfitting experiments, we show best end-of-epoch accuracy. Some
learnt character-based experiments omitted as results were poor already with small dataset.

180

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Table 1: Random Word Task Results

Finnish
Wiki

Selkosanomat Simple-EN
Wiki

Regular 0.204 0.281 (0.028) 0.142
Regular, stemmed 0.225 0.247 (0.070) 0.166
Stem + ending 0.142 (0.020) 0.104 (0.042) 0.188
Moving-average 0.244 0.250 0.174
Regular + moving-average 0.232 0.244 0.208
Learnt character-based na 0.302 0.268

Table 2: Inflected Word Task Results

Finnish Wiki Selkosanomat

Regular 0.268 (0.012) 0.260 (0.024)
Regular, stemmed 0.5* 0.5*
Stem + ending 0.244 (0.019) 0.269 (0.022)
Moving-average 0.230 (0.023) 0.266 (0.022)
Regular + moving-average 0.244 0.232
Learnt character-based na 0.352

* Not sensible: correct and random examples get same form after stemming.

Our embeddings are clearly advantageous for Finnish datasets. The models of
Stem + ending, Moving-average and Regular + moving-average each outperform
regular word-embeddings in different tasks. Stem + ending model outperforms
the regular embedding, showing that splitting words of morphologically rich
languages into subparts can have significant advantages. The performance of
character-based models is also interesting, as character-based models have often
not been able to rival word-based models, and as they can use a significantly
smaller number of parameters (5 ∗ 105 instead of 107).

A visualization of word endings (Figure 4) indicates that the vector repre-
sentations of word endings are highly meaningful. Endings ella, ellä, llä and ällä
tend to be all variations of a certain inflection, relate to being at something.
Endings with a replaced with ä tend to also always represent the same meaning,
only in the context of different word. The istä and asta translate both to from.

181

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

ita

lla

illä

lle

le

alla

la

taan

nkin
ti

ksi

eiden

ällä

eet

een

t

iden

en

et

ille

illa

llä nen

lä

tiin

enä

ja

on

ä

tä aista

estä

nsa

ee

tään

ssä

ieäksi

istä asta

jen

stä

ää

ien

esti

ana essä

issa

ihin

iin

issä

uta
iksi

sta

aan

assssaa

n

un

at

aa

esta

it

an

tää taa

in

ia

ista

min

lta usnsaaina

nan

ään

än

ena

ella

elle

essa

kin

eita

ansa ät

ellä

a

ka ta

l
e

i

ki

aksi

ensä

si u

ssaä

tää

ällä

llä

ella

ellä

istä asta

taa

ää
aa

Fig. 4: Ending Vectors, Projected with t-SNE

5 Conclusion

Our work shows that subword and character-based models can rival regular word-
embeddings for a morphologically rich language. Stem + ending vectors improve
results for many language processing tasks and are very easy to implement. Also
character-based models achieve good results, outperforming regular embeddings
on certain tasks. Constructing a character-level neural network that automat-
ically discovers meaningful units appears to be a promising research direction,
and recent work parallel to ours (e.g. [9]) has started exploring this approach.

References

[1] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, (12), 2011.

[2] Tomás Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and J. Cer-
nocky. Subword language modeling with neural networks. Preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 2012.

[3] Jenna Kanerva, Juhani Luotolahti, Veronika Laippala, and Filip Ginter. Syntactic N-gram
Collection from a Large-Scale Corpus of Internet Finnish. In Proceedings of the Sixth
International Conference Baltic HLT, 2014.

[4] Victor Chahuneau, Eva Schlinger, Noah A. Smith, and Chris Dyer. Translating into Mor-
phologically Rich Languages with Synthetic Phrases. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing., 2013.

[5] Wenpeng Yin and Hinrich Schutze. Deep Learning Embeddings for Discontinuous Linguis-
tic Units. arXiv preprint arXiv:1312.5129, 2013.

[6] Jan A. Botha and Phil Blunsom. Compositional morphology for word representations and
language modelling. arXiv preprint arXiv:1405.4273, 2014.

[7] Xiang Zhang and Yann LeCun. Text Understanding from Scratch. arXiv preprint
arXiv:1502.01710, 2015.

[8] Eric. Malmi, Pyry. Takala, Hannu. Toivonen, Tapani. Raiko, and Aristides Gionis.
Dopelearning: A computational approach to rap lyrics generation. arXiv preprint
arXiv:1505.04771, 2015.

[9] Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved Transition-Based Parsing
by Modeling Characters instead of Words with LSTMs. arXiv preprint arXiv:1508.00657,
August 2015.

182

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

