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Abstract. Within a class-labeled dataset, there are typically two or
more possible class labels. Class-specific subsets of the dataset have the
same class label for each record. Class-specific clusters are the groups of
similar records within these subsets. There exists many machine learning
techniques which require class-specific clusters. We propose RBClust, a
rule based method for finding class-specific clusters. We demonstrate that
when compared to traditional clustering methods, the proposed method
achieves better cluster quality, and computation time is significantly lower.

1 Introduction

A class-specific cluster (CSC) is a cluster in which each record has the same
class label. Some data mining algorithms [1][2][3] require the discovery of CSCs.
However, these algorithms use traditional clustering methods which are not de-
signed for finding CSCs. Traditional clustering methods can often be slow due
to high numbers of distance calculations. We propose RBClust, a fast rule-based
method for finding high quality CSCs. RBClust uses a rule-based method such
as C4.5 [4] to find the patterns in the dataset. Then the clusters are extracted
from the rules. Then to avoid potential issues such as class imbalance, noise,
and overfitting, some clusters are merged. Due to the design of RBClust, the
number of distance calculations needed is much lower, so computation time is
kept low. By leveraging the information of the class-labels, RBClust finds high
quality CSCs. The rest of this study is organised as follows. Section 2 gives a
briefing of the basic concepts and related work. In Section 3 we present RBClust.
Section 4 provides a discussion of our empirical comparisons between RBClust
and the chosen existing methods. Finally, in Section 5, we make our concluding
remarks.

Main Contributions of this Study

• We demonstrate empirically that the proposed method can provide clusters
with similar or higher quality than the existing methods.

• Computation time of the proposed method is empirically shown to be much
lower than some existing methods.
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2 Related Work

Classification is the task of determining the class label Li of a record x from a pre-
defined set of classes L = (L1, L2, . . . , L3). For example, in medical diagnosis,
x can represent a patient and L could be a set of possible diagnoses. That is,
L = (“Asthma”, “Diabetes”, “Cancer”, “Healthy”).

Classifiers are models which can intelligently assign a Li to x. Building a
classifier requires two things: a dataset D, and a classification method m. One
type of classifier model is the rule-based classifier. A rule-based classifier is
comprised of a set of rules R. Each Rj ∈ R is a sequence of conditions and
also has an associated Li. The Li for x is chosen by checking which Rj ∈ R is
satisfied by x. x is then taken as the class label of Rj . To build a rule-based
classifier, D must contain records similar to x which have known class labels, and
m must be a rule-based classification method such as C4.5 [4] or CSForest [5][6].

Clustering is the task of finding groups (known as clusters) of similar records
within a dataset D. The set of found clusters C is often called the clustering
solution. Unlike classification, clustering typically does not require D to have
known class labels. Continuing the previous example, if we take all x ∈ D where
Li = “Asthma”, we would have a new dataset D′ which does not have class
labels. A clustering method may find two clusters within D′. One where each
patient was diagnosed with asthma since birth and one where the diagnosis oc-
curred after pneumonia. These two clusters would be class-specific to “Asthma”.
The centroid of a cluster is the mean of all records within a cluster.

Whereas classifiers may be evaluated by testing the accuracy on a separate
testing dataset, a clustering solution is harder to evaluate. There exist many
metrics for evaluating clustering solutions. These metrics often require the cal-
culation of distances between records resulting in a high computational cost.
For example, the silhouette coefficient [7] metric requires the distance to be
calculated between every possible {(xi, xj)|xi ∈ D, xj ∈ D}. Many clustering
methods require potential clustering solutions to be evaluated multiple times.
This evaluation step contributes heavily to the computation time of clustering
methods. State-of-the-art clustering methods may even take several hours to
run [8].

K-means [9] is a clustering method which first randomly chooses k number
of records where k is user-defined. These chosen records are called seeds. Each
record in D is then assigned to its nearest seed such that k number of clus-
ters are formed. The centroids of these clusters are chosen as the new seeds,
and the process is repeated until some termination condition or a maximum
number of iterations is reached. The main disadvantage of k-means is that the
user needs to guess the number of clusters k in the dataset. If the version of
k-means uses a termination condition, then the condition must be checked every
iteration. This can become time consuming. Several algorithms such as Affinity
Propagation [10] and GenClust [8] do not require the user to estimate the num-
ber of clusters in D. However, these algorithms typically have high-complexity
(GenClust and AP both have quadratic complexity).
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3 Our Method: RBClust

In Section 2, we highlighted two main disadvantages with the reviewed exist-
ing methods. Long computation time, and the reviewed existing methods are
not designed specifically for finding CSC. Therefore, they do not make use of
the overall dataset for finding the CSCs. We propose a rule-based clustering
method RBClust which aims to overcome these disadvantages. The pseudocode
for RBClust is shown in Algorithm 1. The steps of RBClust can be described
as follows:

• Step 1: Rule Discovery Build a rule based classifier over the whole
training dataset D. In Algorithm 1 the classifier choice is the parameter
m1. The rules need to be extracted from the classifier, that is, the results
of applying m to D. Later, in Section 4 we choose the C4.5 [4] algorithm
for m. C4.5 uses a pruning step to avoid a classifier that is too specific to
the training data (known as overfitting). However, since we are interested
in a classifier with high accuracy on D, we turned pruning off.

• Step 2: Record Sorting A tri-dimensional array X is used to store the
records where Xijk is the kth record which follows the jth rule and belongs
to the ith class. The simplest way of performing this step is to classify all
records from D using the classifier.

• Step 3: Cluster Formation Using each Xij ∈ X , we build the data
structure required for a cluster and store it as Cij ∈ C. During this
step, we ignore empty sets of Xij (where no ith class records followed the
corresponding rule).

• Step 4: Cluster Merging There are three problems that could be present
after using Steps 1-3. Firstly, D could have an imbalanced ratio of records
in each class. For example, there could be 200 records with class label
L1 and 40 records with L2. This is a well-known problem in classification
called class-imbalance. If D is class imbalanced, RBCClust has many
more records to find clusters specific to L1 than clusters specific to L2.
Secondly, the clusters in C could be too specific to D which can cause the
clustering solution to have poor generalization on future unseen records.
This is known as cluster overfitting. Thirdly, sets of Xij could have a very
small number of records. Many other algorithms would not consider this a
cluster, and instead treat it as a noisy record. To avoid these problems, we
introduce a parameter θ. During this step, RBClust checks each Cij ∈ C
to see if it has a minimum number of records. If it does not, all records
from Cij are moved to the nearest cluster (Lines 25-29). The minimum
number of records Smin

i for an ith class cluster is calculated in Line 23 by
multiplying the total number of ith class records in D by θ. This combats
each of the previously mentioned problems.

1The classifier must produce rules which include all training records and are mutually
exclusive. C4.5 is an example
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Input: A dataset D, a rule-based classification method m (default:
C4.5), minimum cluster percentage θ (default: 0.02)

Output: A set of clusters C where Cij is the jth cluster specific to the
class with index i

1 Step 1: Rule Discovery
2 Let R be a set of rules;
3 R← RetrieveRules(D,m);

4 end
5 Step 2: Record Sorting
6 Let X be a set of records where Xijk is the kth record which follows

the jth rule and belongs to the ith class;

7 Similarly, let Xij be the set of records which follow the jth rule and

belong to the ith class;
8 X ← ClassifyRecords(D,R);

9 end
10 Step 3: Cluster Formation
11 foreach Xij ∈ X do
12 if numberOfRecords(Xij) > 0 then
13 Cij .add(Xij);
14 end

15 end

16 end
17 Step 4: Cluster Merging
18 Let Si ∈ S be the number of records in D with the class that has the

ith index;
19 Si ← CountClassRecords(D);
20 Let Smin

i be the minimum number of records allowed for a
class-specific cluster with class index i;

21 foreach Si ∈ S do
22 Smin

i ← Si ∗ θ;
23 end
24 foreach Cij ∈ C do
25 if numberOfRecords(Cij < Smin

i ) then
26 Find the nearest cluster (distance between centroids) to Cij .

Let it be Cneighbor
ij ;

27 Combine Cij and Cneighbor
ij into one cluster;

28 Update C accordingly;

29 end

30 end
31 return C;

32 end
Algorithm 1: RBClust
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4 Experiments

Setup

We empirically compare the proposed method RBClust against a basic version
of k-means SimpleKMeans, and Affinity Propagation (AP). We chose the basic
k-means since it is what was used in an early work which required CSCs [2].
AP was chosen due to its popularity within traditional clustering literature. We
compare the methods over 4 class-specific problems which come from 2 separate
datasets. The transfusion dataset is available from the UCI Machine Learning
Repository [11]. Since class-specific clustering is a major component in several
class imbalance related methods [1][2][3], we used a dataset (ecoli1) from the
imbalanced dataset repository in KEEL [12]. We used the implementation of
SimpleKMeans from WEKA [13] and the implementation of AP from ELKI [14]
(version 0.7). For k-means, we set k to 4 to be consistent with [2]. For RBClust,
we set θ to 0.02 based off our experiments. All other parameters are set to de-
fault values. For the cluster evaluation metric, we use the well-known silhouette
coefficient [7].

Table 1: Methods Comparison - Silhouette Coefficient
Data

Information
Methods

<Dataset-ClassValue> #Records
C4.5
AUC

kMeans AP RBClust

Transfusion-1 178 0.717 0.307 0.179 0.408
Transfusion-0 570 0.717 -0.028 0.074 0.227

ecoli1-P 77 0.924 0.26 0.194 0.345
ecoli1-N 259 0.924 -0.006 0.184 0.235

Discussion of Results

Table 2: Time to Find all CSCs (ms)
Dataset kMeans AP RBClust

Transfusion 116 5496 197
ecoli1 128 192 199

The results for the clus-
ter silhouette comparison are
shown in Table 1. RB-
Clust achieves the highest sil-
houette coefficient (shown in
bold) in all four problems

compared to the existing methods. kMeans can achieve poor results due to
the set number of clusters (k). However, this is not an issue for RBClust since
the number of clusters is not pre-defined (also true for AP). The performance
of the C4.5 tree (measured in AUC2) that was used in RBClust is also shown in
Table 1. We can see that RBClust is able to perform better than the existing
methods even when the performance is significantly lower (-0.207 AUC). We also
recorded the computation time needed for finding all CSCs within each dataset.
This information is shown in Table 2. It is apparent that for the larger dataset

2Ranges from 0 to 1. Higher the better
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(Transfusion), AP scales poorly in computation time. However, RBClust is able
to perform the clustering process in a small fraction of the time. Even though
kMeans is slightly faster in both datasets, we can see in Table 1 that it does not
perform as well as RBClust. Based on these results, we believe that RBClust
has promise for delivering high quality clusters with low computation time. Our
future work involves extending RBClust for higher quality without significantly
increasing the computation time.

Code Availability

To benefit the reproducibility of our results, the code used to run RBClust will be
available at ”www.mikesiers.com/software” and ”http://csusap.csu.edu.au/˜zislam/”
at the time of publication.
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