
RBClust: High quality class-specific clustering

using rule-based classification

Michael J. Siers & Md Zahidul Islam

School of Computing and Mathematics - Charles Sturt University
Panorama Avenue, NSW, 2795 - Australia

Abstract. Within a class-labeled dataset, there are typically two or
more possible class labels. Class-specific subsets of the dataset have the
same class label for each record. Class-specific clusters are the groups of
similar records within these subsets. There exists many machine learning
techniques which require class-specific clusters. We propose RBClust, a
rule based method for finding class-specific clusters. We demonstrate that
when compared to traditional clustering methods, the proposed method
achieves better cluster quality, and computation time is significantly lower.

1 Introduction

A class-specific cluster (CSC) is a cluster in which each record has the same
class label. Some data mining algorithms [1][2][3] require the discovery of CSCs.
However, these algorithms use traditional clustering methods which are not de-
signed for finding CSCs. Traditional clustering methods can often be slow due
to high numbers of distance calculations. We propose RBClust, a fast rule-based
method for finding high quality CSCs. RBClust uses a rule-based method such
as C4.5 [4] to find the patterns in the dataset. Then the clusters are extracted
from the rules. Then to avoid potential issues such as class imbalance, noise,
and overfitting, some clusters are merged. Due to the design of RBClust, the
number of distance calculations needed is much lower, so computation time is
kept low. By leveraging the information of the class-labels, RBClust finds high
quality CSCs. The rest of this study is organised as follows. Section 2 gives a
briefing of the basic concepts and related work. In Section 3 we present RBClust.
Section 4 provides a discussion of our empirical comparisons between RBClust
and the chosen existing methods. Finally, in Section 5, we make our concluding
remarks.

Main Contributions of this Study

• We demonstrate empirically that the proposed method can provide clusters
with similar or higher quality than the existing methods.

• Computation time of the proposed method is empirically shown to be much
lower than some existing methods.

593

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

2 Related Work

Classification is the task of determining the class label Li of a record x from a pre-
defined set of classes L = (L1, L2, . . . , L3). For example, in medical diagnosis,
x can represent a patient and L could be a set of possible diagnoses. That is,
L = (“Asthma”, “Diabetes”, “Cancer”, “Healthy”).

Classifiers are models which can intelligently assign a Li to x. Building a
classifier requires two things: a dataset D, and a classification method m. One
type of classifier model is the rule-based classifier. A rule-based classifier is
comprised of a set of rules R. Each Rj ∈ R is a sequence of conditions and
also has an associated Li. The Li for x is chosen by checking which Rj ∈ R is
satisfied by x. x is then taken as the class label of Rj . To build a rule-based
classifier, D must contain records similar to x which have known class labels, and
m must be a rule-based classification method such as C4.5 [4] or CSForest [5][6].

Clustering is the task of finding groups (known as clusters) of similar records
within a dataset D. The set of found clusters C is often called the clustering
solution. Unlike classification, clustering typically does not require D to have
known class labels. Continuing the previous example, if we take all x ∈ D where
Li = “Asthma”, we would have a new dataset D′ which does not have class
labels. A clustering method may find two clusters within D′. One where each
patient was diagnosed with asthma since birth and one where the diagnosis oc-
curred after pneumonia. These two clusters would be class-specific to “Asthma”.
The centroid of a cluster is the mean of all records within a cluster.

Whereas classifiers may be evaluated by testing the accuracy on a separate
testing dataset, a clustering solution is harder to evaluate. There exist many
metrics for evaluating clustering solutions. These metrics often require the cal-
culation of distances between records resulting in a high computational cost.
For example, the silhouette coefficient [7] metric requires the distance to be
calculated between every possible {(xi, xj)|xi ∈ D, xj ∈ D}. Many clustering
methods require potential clustering solutions to be evaluated multiple times.
This evaluation step contributes heavily to the computation time of clustering
methods. State-of-the-art clustering methods may even take several hours to
run [8].

K-means [9] is a clustering method which first randomly chooses k number
of records where k is user-defined. These chosen records are called seeds. Each
record in D is then assigned to its nearest seed such that k number of clus-
ters are formed. The centroids of these clusters are chosen as the new seeds,
and the process is repeated until some termination condition or a maximum
number of iterations is reached. The main disadvantage of k-means is that the
user needs to guess the number of clusters k in the dataset. If the version of
k-means uses a termination condition, then the condition must be checked every
iteration. This can become time consuming. Several algorithms such as Affinity
Propagation [10] and GenClust [8] do not require the user to estimate the num-
ber of clusters in D. However, these algorithms typically have high-complexity
(GenClust and AP both have quadratic complexity).

594

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

3 Our Method: RBClust

In Section 2, we highlighted two main disadvantages with the reviewed exist-
ing methods. Long computation time, and the reviewed existing methods are
not designed specifically for finding CSC. Therefore, they do not make use of
the overall dataset for finding the CSCs. We propose a rule-based clustering
method RBClust which aims to overcome these disadvantages. The pseudocode
for RBClust is shown in Algorithm 1. The steps of RBClust can be described
as follows:

• Step 1: Rule Discovery Build a rule based classifier over the whole
training dataset D. In Algorithm 1 the classifier choice is the parameter
m1. The rules need to be extracted from the classifier, that is, the results
of applying m to D. Later, in Section 4 we choose the C4.5 [4] algorithm
for m. C4.5 uses a pruning step to avoid a classifier that is too specific to
the training data (known as overfitting). However, since we are interested
in a classifier with high accuracy on D, we turned pruning off.

• Step 2: Record Sorting A tri-dimensional array X is used to store the
records where Xijk is the kth record which follows the jth rule and belongs
to the ith class. The simplest way of performing this step is to classify all
records from D using the classifier.

• Step 3: Cluster Formation Using each Xij ∈ X , we build the data
structure required for a cluster and store it as Cij ∈ C. During this
step, we ignore empty sets of Xij (where no ith class records followed the
corresponding rule).

• Step 4: Cluster Merging There are three problems that could be present
after using Steps 1-3. Firstly, D could have an imbalanced ratio of records
in each class. For example, there could be 200 records with class label
L1 and 40 records with L2. This is a well-known problem in classification
called class-imbalance. If D is class imbalanced, RBCClust has many
more records to find clusters specific to L1 than clusters specific to L2.
Secondly, the clusters in C could be too specific to D which can cause the
clustering solution to have poor generalization on future unseen records.
This is known as cluster overfitting. Thirdly, sets of Xij could have a very
small number of records. Many other algorithms would not consider this a
cluster, and instead treat it as a noisy record. To avoid these problems, we
introduce a parameter θ. During this step, RBClust checks each Cij ∈ C
to see if it has a minimum number of records. If it does not, all records
from Cij are moved to the nearest cluster (Lines 25-29). The minimum
number of records Smin

i for an ith class cluster is calculated in Line 23 by
multiplying the total number of ith class records in D by θ. This combats
each of the previously mentioned problems.

1The classifier must produce rules which include all training records and are mutually
exclusive. C4.5 is an example

595

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Input: A dataset D, a rule-based classification method m (default:
C4.5), minimum cluster percentage θ (default: 0.02)

Output: A set of clusters C where Cij is the jth cluster specific to the
class with index i

1 Step 1: Rule Discovery
2 Let R be a set of rules;
3 R← RetrieveRules(D,m);

4 end
5 Step 2: Record Sorting
6 Let X be a set of records where Xijk is the kth record which follows

the jth rule and belongs to the ith class;

7 Similarly, let Xij be the set of records which follow the jth rule and

belong to the ith class;
8 X ← ClassifyRecords(D,R);

9 end
10 Step 3: Cluster Formation
11 foreach Xij ∈ X do
12 if numberOfRecords(Xij) > 0 then
13 Cij .add(Xij);
14 end

15 end

16 end
17 Step 4: Cluster Merging
18 Let Si ∈ S be the number of records in D with the class that has the

ith index;
19 Si ← CountClassRecords(D);
20 Let Smin

i be the minimum number of records allowed for a
class-specific cluster with class index i;

21 foreach Si ∈ S do
22 Smin

i ← Si ∗ θ;
23 end
24 foreach Cij ∈ C do
25 if numberOfRecords(Cij < Smin

i) then
26 Find the nearest cluster (distance between centroids) to Cij .

Let it be Cneighbor
ij ;

27 Combine Cij and Cneighbor
ij into one cluster;

28 Update C accordingly;

29 end

30 end
31 return C;

32 end
Algorithm 1: RBClust

596

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

4 Experiments

Setup

We empirically compare the proposed method RBClust against a basic version
of k-means SimpleKMeans, and Affinity Propagation (AP). We chose the basic
k-means since it is what was used in an early work which required CSCs [2].
AP was chosen due to its popularity within traditional clustering literature. We
compare the methods over 4 class-specific problems which come from 2 separate
datasets. The transfusion dataset is available from the UCI Machine Learning
Repository [11]. Since class-specific clustering is a major component in several
class imbalance related methods [1][2][3], we used a dataset (ecoli1) from the
imbalanced dataset repository in KEEL [12]. We used the implementation of
SimpleKMeans from WEKA [13] and the implementation of AP from ELKI [14]
(version 0.7). For k-means, we set k to 4 to be consistent with [2]. For RBClust,
we set θ to 0.02 based off our experiments. All other parameters are set to de-
fault values. For the cluster evaluation metric, we use the well-known silhouette
coefficient [7].

Table 1: Methods Comparison - Silhouette Coefficient
Data

Information
Methods

<Dataset-ClassValue> #Records
C4.5
AUC

kMeans AP RBClust

Transfusion-1 178 0.717 0.307 0.179 0.408
Transfusion-0 570 0.717 -0.028 0.074 0.227

ecoli1-P 77 0.924 0.26 0.194 0.345
ecoli1-N 259 0.924 -0.006 0.184 0.235

Discussion of Results

Table 2: Time to Find all CSCs (ms)
Dataset kMeans AP RBClust

Transfusion 116 5496 197
ecoli1 128 192 199

The results for the clus-
ter silhouette comparison are
shown in Table 1. RB-
Clust achieves the highest sil-
houette coefficient (shown in
bold) in all four problems

compared to the existing methods. kMeans can achieve poor results due to
the set number of clusters (k). However, this is not an issue for RBClust since
the number of clusters is not pre-defined (also true for AP). The performance
of the C4.5 tree (measured in AUC2) that was used in RBClust is also shown in
Table 1. We can see that RBClust is able to perform better than the existing
methods even when the performance is significantly lower (-0.207 AUC). We also
recorded the computation time needed for finding all CSCs within each dataset.
This information is shown in Table 2. It is apparent that for the larger dataset

2Ranges from 0 to 1. Higher the better

597

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

(Transfusion), AP scales poorly in computation time. However, RBClust is able
to perform the clustering process in a small fraction of the time. Even though
kMeans is slightly faster in both datasets, we can see in Table 1 that it does not
perform as well as RBClust. Based on these results, we believe that RBClust
has promise for delivering high quality clusters with low computation time. Our
future work involves extending RBClust for higher quality without significantly
increasing the computation time.

Code Availability

To benefit the reproducibility of our results, the code used to run RBClust will be
available at ”www.mikesiers.com/software” and ”http://csusap.csu.edu.au/˜zislam/”
at the time of publication.

References

[1] Michael J Siers and Md Zahidul Islam. Standoff-balancing: A novel class imbalance
treatment method inspired by military strategy. In AI2015 (Accepted). 2015.

[2] Nathalie Japkowicz. Concept-learning in the presence of between-class and within-class
imbalances. In Advances in Artificial Intelligence, pages 67–77. Springer, 2001.

[3] Adam Nickerson, Nathalie Japkowicz, and Evangelos Milios. Using unsupervised learning
to guide resampling in imbalanced data sets. Proceedings of the Eighth International
Workshop on AI and Statitsics, pages 261–265, 2001.

[4] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 1993.

[5] Michael J Siers and Md Zahidul Islam. Cost sensitive decision forest and voting for
software defect prediction. In PRICAI 2014: Trends in Artificial Intelligence, pages
929–936. Springer, 2014.

[6] Michael J Siers and Md Zahidul Islam. Software defect prediction using a cost sensi-
tive decision forest and voting, and a potential solution to the class imbalance problem.
Information Systems, 51:62–71, 2015.

[7] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[8] Md Anisur Rahman and Md Zahidul Islam. A hybrid clustering technique combining a
novel genetic algorithm with k-means. Knowledge-Based Systems, 71:345–365, 2014.

[9] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[10] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points.
science, 315(5814):972–976, 2007.

[11] M. Lichman. UCI machine learning repository, 2013.

[12] J Alcalá, A Fernández, J Luengo, J Derrac, S Garćıa, L Sánchez, and F Herrera. Keel
data-mining software tool: Data set repository, integration of algorithms and experimental
analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255–
287, 2010.

[13] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[14] Elke Achtert, Hans-Peter Kriegel, and Arthur Zimek. Elki: a software system for evalua-
tion of subspace clustering algorithms. In Scientific and Statistical Database Management,
pages 580–585. Springer, 2008.

598

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

