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Abstract. Humanoid robots need to interact with the environment and are 
constantly in rigid contact with objects. When a task must be performed, multiple 
contact points are responsible to add a degree of complexity to their control and, 
due to excessive efforts in joints, the durability of the components may be affected. 
This work presents the use of a recent proposed metaheuristic called Runner-Root 
Algorithm (RRA) applied on the static force capacity optimization of a humanoid 
robot. The performance of this algorithm was evaluated and compared to four well 
stablished methods showing promising results for RRA in this type of application.  

1 Introduction 

Traditional design of humanoid robots concerns the realization of an anthropomorphic 
structure with many degrees of freedom. Current researches on humanoid robots are 
presenting significant improvements on movements in order to reproduce the human 
body dynamic [1-4]. On this point, the positioning of distinct parts of the robot can 
significantly affect the force capacity to perform a pre-determinate task [5].  
 Nevertheless, there are just few studies that deal with the static force capacity of 
these machines subjected to high loads situations. By considering that the robot can 
assume different configurations, maintaining the same contact points with the 
environment, the system can be described as both nonconvex and nonlinear, by 
increasing its complexity. In this case, the robot force capabilities problem can be 
treated as a global optimization problem [6], where the main objectives are: i) to test 
metaheuristic optimization techniques applied on the prevention of the robot integrity, 
those add to the problem by a set of constraints; ii) to optimize the horizontal static 
force capacity of the robot, considering only the sagittal plane. 

The next section of this work presents the humanoid model followed by the 
optimization problem, which is addressed in section 3. Section 4 describes the 
optimization procedures and, in section 5, the comparison between RRA (Runner-
Root Algorithm) [7] and four well stablished metaheuristics is presented. Finally, 
section 6 concludes this work addressing the future research associated to this paper. 

                                                           
* The authors thank the National Council for the Improvement of Higher Education 
(CAPES) of Brazil for the financial support of this research. 

683

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



2 Humanoid Model 

This section describes the physical characteristics, the kinematics, and the static 
balance of the humanoid robot. 

2.1 Physical characteristics  

The physical model of the robot can be described by twelve revolute joints (from A to 
L) with one degree of freedom each, and nine links (from 1 to 9), as shown in Fig. 1. 

 
Fig. 1: Humanoid physical model [7].  

 The maximum torques supported by joints are defined by motors. It is supposed 
that the links can support any effort. The physical features of joints and links are 
described in Tab. 1, where the units are written generically as units of mass (u.m.), 
length (u.l.) and torque (u.t.), respectively. It is also assumed that the joints in contact 
with the environment (ankles and fists) cannot apply any moment. 

Table 1: Humanoid physical features. 

Links Mass (u.m.) Length (u.l.) Joints Maximum torque (u.t.) 
Forearms 1,0 1,0 Fists Absent 

Biceps 1,0 1,0 Elbows 10 
Trunk 2,0 2,0 Shoulders 20 
Thighs 2,0 1,2 Hips 40 
Calfs 1,5 1,2 Knees 45 

   Ankles Absent 

2.2 Robot kinematic and static balance 

By varying both the trunk coordinates and the trunk slant, when the robot adopts any 
four contact points (hands and feet) as presented in Fig. 2, infinite configurations may 
be assumed. Taking into account all these humanoid positioning possibilities, the 
kinematics was calculated according to [1], where the trunk central position and the 
trunk inclination are defined by the coordinates ሺݔହ,  ,ହߠ ହሻ and the angleݖ
respectively. The shoulders and hips positions (ݔ଴,  ଴) were defined by trigonometricݖ
equations. The contact points of each limb (ݔଶ,  ଶ) are previously configured, and theݖ
middle joints positions (ݔଵ,   .ଵ) were calculated using the inverse kinematicsݖ
 Environmental influences were considered on the humanoid kinematic. The 
gravitational force acts on the links as a vertical force concentrated in their center of 
mass. In the humanoid model, it was assumed that the links have regular geometry 
and their centers of mass overlaps with the geometry centers. 
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Figure 2: Optimization problem and possible humanoid configurations, when 

pulling an object. 

 The tumbling and the sliding effects were also considered and the concept of the 
Zero Moment Point (ZMP), which represents the projection of the robot’s gravity 
center (GC) on the ground, was adopted to avoid tumbling [8]. The ZMP should be 
inside the stability polygon, which is the region on the ground between the feet. To 
avoid the sliding effect, it is assumed that the friction coefficients are known and a 
specific task can just be performed if a required roughness is available. 

 To obtain the static balance of the robot, i.e. the definition of both internal 
forces and moments, the Davies’ Method was adopted [9]. This method provides a 
matrix framework to solve the static analysis. More information about the application 
of Davies’ Method in the humanoid static balance can be found in [6]. 

3 Optimization Problem 

The optimization problem is a task where the humanoid should pull an object through 
a handle (a rigid cable fixed on the object), which consists in maximizing the 
horizontal static force capacity by fulfilling physical constraints. The cost function 
can be specified as the inverse of the horizontal forces: 

݂ሺݔԦሻ ൌ
ଵ

|ி௫ಲ|ା|ி௫ವ|
, (1) 

where the components Fx୅ and Fxୈ are the horizontal forces in the upper contacts 
with the environment. The strategy adopted in this work is to use 5 joints’ torques as 
primary variables and Fx୅ and Fxୈ become secondary variables defined by the static 
balance. Further, the contact points (4 coordinates) and the trunk positioning (3 
variables) are required to define the kinematics. The dimension of the optimization 
problem is equal to 12 (Tab. 2). Physical constraints related to physical limitations of 
the human body, to the humanoid and to the surroundings were also considered. 

Table 2: Decision variables. 

Var. Specification (unit) 
Search 
Space 

Var. Specification (unit) 
Search 
Space 

 Contact z of ankle 2 (m) [4.5, 8.0] ࡸ࢞ ૞ Trunk center in x (m) [6.50, 9.5]࢞
 Shoulder 1 torque (Nm) [-20, 20]  ࡯࣎ ૞ Trunk center in z (m) [1.00, 3.4]ࢠ
ߨ] Trunk angle (rad) ࣂ 6⁄ , ߨ 2⁄  Shoulder 2 torque (Nm) [-20 ,20] ࡲ࣎ [
 Hip 1 torque (Nm) [-40, 40] ࡳ࣎ Contact z of fist 1 (m) [2.0, 4.0] ࡭ࢠ

 Hip 2 torque (Nm) [-40, 40] ࡶ࣎ Contact z of fist 2 (m) [2.0, 4.0] ࡰࢠ

 Knee 2 torque (Nm) [-45, 45] ࡷ࣎ Contact z of ankle 1 (m) [4.5, 8.0] ࡵ࢞
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 The limbs have a known reachable space and the following geometric inequality 
must be fulfilled to each limb in order to guarantee that the surroundings are 
contained within the reachable space: 

ଵ݃ሺݔԦሻ: ඥሺݔଶ െ ଴ሻଶݔ ൅ ሺݖଶ െ ଴ሻଶݖ െ dଵ െ dଶ ൑ 0, (2) 

where dଵ and dଶ are the lengths of the links, xଶ e zଶ	are the coordenates for the 
contact joints with the surroundings and x଴ e z଴ with the trunk. Torque constraints 
must be respected in order to allow the humanoid to perform a particular task: 

݃ଶሺݔԦሻ:	 ௝ܶ െ ௝ܶ
௠௔௫ ൑ 0, ∀ ݆ ∈ ሼܤ, ,ܥ ,ܧ ,ܨ ,ܩ ,ܪ ,ܬ  ሽ. (3)ܭ

  In equation 3, ௝ܶ
௠௔௫ is the upper bound for joint torque ௝ܶ. When the torques 

are considered null at contact joints, these constraints are neglected. Moreover, the 
following constraint is imposed to avoid the sliding factor: 

݃ଷሺݔԦሻ: μ െ μ௠௔௫ ൑ 0 (4) 

where μ୫ୟ୶ is the friction coefficient and μ the calculated friction. This condition 
need to be fulfilled by all the contact points, where μ୫ୟ୶ ൌ 0.5 was adopted. 
 In order to avoid that a given joint is positioned inside the object or below the 
ground, the following constraints are considered: 

݃ସሺݔԦሻ: ௝ݔ െ ௢ݔ ൑ 0, (5) 
݃ହሺݔԦሻ:	ݖ௦ െ ௝ݖ ൑ 0, ∀ ݆ ∈ ሼܤ, ,ܥ ,ܧ ,ܨ ,ܩ ,ܪ ,ܬ ,ሽܭ (6) 

where x୨ and z୨ are the coordinates of join j, x୭ the object’s coordinate along the 
x-axis and zୱ the coordinate along z-axis. Furthermore, it is necessary that the ZMP 
be inside the stability polygon: 

݃଺ሺݔԦሻ: ܲܯܼ െ ௭௠௣௠௔௫ݔ ൑ 0, (7) 
݃଻ሺݔԦሻ: ௭௠௣௠௜௡ݔ െ ZMP ൑ 0, (8) 

where x୸୫୮୫୧୬  and x୸୫୮୫ୟ୶ are the joints’ coordinates in contact with the ground (rear and 
front contact, respectively). To guarantee that the resultant forces are in the right 
direction, the following constraint is stated to each one of the upper contact joints: 

଼݃ሺݔԦሻ: െܨ௫,௝ ൑ 0 ∀ ݆ ∈ ሼܣ,  ሽ (9)ܦ

Finally, elbows and hips cannot be attached in the handle/fixed cable:  

݃ଽሺݔԦሻ:	൜
1, ሺݔ௝ ൏ ௛ሻݔ ∧ ሺݖ௝ ൐ ௛ݖ

௠௜௡ሻ ∧ ሺݖ௝ ൏ ௛ݖ
௠௔௫ሻ

െ1, ݁ݏ݅ݓݎ݄݁ݐ݋
, ∀ ݆ ∈ ሼܤ, ,ܥ ,ܧ ,ܨ ,ܩ ,ܪ ,ܬ  ሽ (10)ܭ

where ݔ௛ is the coordinate of the handle contact at the x-axis and ൣݖ௛
௠௜௡, ௛ݖ

௠௔௫൧ is the 
handle range in the z-axis. Aiming to incorporate the above listed constraints into the 
optimization problem, a penalty function is defined, such that: 

Ԧሻݔሺ݌ ൌ ݓ ∗෍ ݃௞ሺݔԦሻ ൐ 0
ଽ

௞ୀଵ
 (11) 

where, ݓ is a constant used to weight the penalization of the undesired solutions. In 
this paper, this value has been defined as 10000 based on previous tests. To conclude 
the optimization problem, the final cost function is the sum of equations (1) and (11). 

4 Optimization Procedures 

In order to evaluate the performance of RRA [7] the optimization problem described 
in section 3 was adopted. The results provided by RRA were compared with four well 
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stablished algorithms: Self-adaptive Differential Evolution (SaDE) [10], Adaptive 
Differential Evolution with Optional External Archive (JADE) [11], Symbiotic 
Organisms Search (SOS) [12], and Particle Swarm Optimization (PSO) [13].  
 The number of mother plants for the RRA, the populations sizes of SaDE and 
JADE, the SOS’s number of organisms, and the PSO’s swarm size have been defined 
as 120 (10 times the problem dimension) [16]. The parameters for all the algorithms 
were obtained from specialized literature and are illustrated on Tab. 3. 

Table 3: Algorithms’ parameters. 

RRA [11] SaDE [12] JADE [13] SOS [14] PSO [15] 
drunner = 1010 LP = 50 c = 0.1 initial_ecosystem = 50 c1 = 2 

droot = 108 CRmk = 0.05 p = 0.05 c2 = 1.3 
toll = 10-3  CRm = 0.5 w = 0.7 

stallmax = 2ൈ103  Fm = 0.5 v = 0.2 
 Archive = 120

5 Results 

In order to properly evaluate the performance of the algorithms, 30 runs of each 
algorithm have been executed. The stop criterion has been defined as 10,000 times the 
problem dimension, as suggested in [16]. The results were presented in terms of 
minimum, average, and maximum costs and also by the standard deviation, as 
presented in Tab. 4. As it can be seen by the emphasized results, RRA did not present 
the best result, which means the minimum value for the cost function. However, in 
terms of 30 runs (mean), maximum and standard deviation, the RRA has overcome 
the other ones. Figure 3 shows the robot position found by RRA Algorithm, where it 
can be noticed that the hibs are near but not in contact with the object. 

Table 4: Comparison among RRA, SaDE, JADE, SOS and PSO algorithms. 

Algorithm Minimum Mean Maximum Standard deviation
RRA 0.0117766 0.0117821 0.0117959 5.34E-06 
SaDE 0.0117740 0.0117850 0.0118446 1.73E-05 
JADE 0.0119194 0.0134109 0.0159493 1.11E-03 
SOS 0.0117757 0.0118038 0.0122513 8.74E-05 
PSO 0.0117739 0.0125039 0.017092 1.16E-03 

 
Figure 3: Best position for the humanoid found by RRA algorithm. 
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6 Conclusion 

This work proposed an investigation of a recent introduced metaheuristic method 
submitted to a humanoid robot static force capacity optimization problem. The 
Runner-Root Algorithm (RRA) was tested and compared to four well-stablished 
optimization methods: SaDE, JADE, SOS, and PSO.  The RRA found a maximum 
horizontal force of 84.92N without any significant variation when compared to the 
best result found by the PSO method. Future research will be related to test distinct 
optimization methods and to create a three-dimensional model for the humanoid. 
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