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Abstract.

In this study, a novel method to obtain user-dependent human activity
recognition models unobtrusively by using the sensors of a smartphone is
presented. The recognition consists of two models: sensor fusion-based
user-independent model for data labeling and single sensor-based user-
dependent model for final recognition. The functioning of the presented
method is tested with human activity data set, including data from ac-
celerometer and magnetometer, and with two classifiers. Comparison
of the detection accuracies of the proposed method to traditional user-
independent model shows that the presented method has potential, when
the method is tested with two classifiers and five persons, in nine cases out
of ten it is better than the traditional method, but more experiments using
different sensor combinations should be made to show the full potential of
the method.

1 Problem statement and related work

Smartphones have become increasingly common and people carry them every-
where they go, this means that nowadays almost every one has a device capable
to be used to recognize activities. This of course enables a lot of possilities to
the field of activity recognition. As known, smartphones include a wide range
of sensors, such as magnetometer, gyroscope, GPS, proximity sensor, ambient
light sensor, thermometer and barometer. Still, most activity recognition studies
use only accelerometers in detection, for instance [1], [2], [3], [4]. However, by
fusing the sensors of a mobile phone more accurate models could be build than
using only one sensor [5]. On the other hand, this improvement comes at the
expense of energy efficiency. While smartphones have a limited battery capacity,
the sensor fusion-based recognition is seldom a usable approach when the aim
is to monitor everyday life 24/7. This calls for innovative solutions to employ
sensor fusion. For instance, in [6] a smart and energy-efficient way to deploy
the sensors of a mobile phone to recognize activities was presented. The method
presented in the study uses the minimum number of sensors needed to detect
user’s activity reliably and when activity changes, more sensors are used to de-
tect the new activity. By using this type of smart sensor selection, the battery
life can be improved by 75%. In addition, in [7] the idea to use sensor fusion
to build adaptive recognition models was presented. In the study, a method
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to personalize user-independent walking speed estimation model is presented.
In the study, it is noted that user-independent walking speed estimation model
based on accelerometer data is not accurate when walking in unconstrained con-
ditions. Therefore, the study introduced an automatic calibration methodology
combining accelerometer and GPS data to find a person-specific offset to be used
with user-independent estimation model. Offset was determined by comparing
walking speed estimation at treadmill to speed measured by the GPS outdoors.
By using this method, it was possible to reduce the walking speed estimation
error by 8.8%

The idea of the novel method presented in this study is to build user-
dependent recognition models without need for a separate data collection session.
Typically data collecting phase is compulsory, and therefore user-independent
methods are often preferred instead of personal ones, though, it is shown that
user-dependent recognition models are more accurate than user-independent [8].

2 Experimental dataset

The data used in this study is already used in [4]. However, in this study only
data collected from trousers’ front pocket was used. Data was available from five
subjects and these subjects performed five different activities: walking, running,
cycling, driving a car, and idling, that is, sitting/standing.

The data were collected using a Nokia N8 smartphone running Symbianˆ3
operating system. N8 includes several sensors, however, in this study only ac-
celerometer and magnetometer were used. The used sampling rate was 40Hz.
The total amount of the data was about fifteen hours.

3 From user-independent to personal recognition models

The proposed method is presented in Figure 1 and it consists of four phases:
1. Train sensor fusion-based user-independent model. In the first phase, sen-

sor fusion-based recognition model is used to recognize activities from a stream-
ing data. To maximize the recognition rate of this model, it is trained using a
large number of features. These can include for instance features extracted from
time domain, as well as, frequency domain. Moreover, these features can use
more than one type of sensors of a smartphone.

2. Collect and label personal data when user is using the recognition applica-
tion based on user-independent model. When streaming data is classified using
sensor fusion-based user-independent model, it can be assumed that recognition
is reliable. Therefore, by combining these recognition results, and using them as
labels, and the data related to them, it is possible to collect personal training
data set while sensor fusion-based model is used to recognize activities.

3. Train the single sensor-based user-dependent model. When personal data
from each of the recognized activities is available, user-dependent recognition
model can be trained based on it using the classification results as labels. In
order to make this personal recognition model light, it needs to be based on a low
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Fig. 1: The proposed method consists of two classification models: user-
independent model which tries to maximize the recognition accuracy, and user-
dependent model which minimizes the computational load.

number of features extracted from a data of one sensor and from one domain.
In practice, it is wise to built accelerometer-based user-dependent model, as
accelerometers are the most energy efficient sensors, and most accurate as well.

4. Recognize activities using the user-dependent model. Streaming data can
now be classified using a light, single sensor-based user-dependent model.

4 Methods

In this study, the effect of gravitation was eliminated from the sensor readings
by combining all three acceleration channels as one using sum of squares. The
same was done to magnetometer signals as well. Moreover, calibration differences
between devices were eliminated by using the method presented in [4].

In the feature extraction, sliding window method was used with window
length of 1 second, which is equal to 40 samples as the used sampling rate was
40Hz, and slide of 0.25 seconds. To train the single sensor-based user-dependent
model, 19 features were extracted from magnitude acceleration signal. These
features were standard deviation, minimum, maximum. In addition, instead
of extracting percentiles, the remainder between percentiles (10, 25, 75, and
90) and median were calculated. Moreover, the sum of values above or below
percentile (10, 25, 75, and 90), square sum of values above of below percentile
(10, 25, 75, and 90), and number of crossings above or below percentile (10, 25,
75, and 90) were extracted and used as features. The user-independent model
uses these same features as well, but they are extracted from both magnitude
acceleration signal and magnitude magnetometer signal. In addition, from these
signals frequency domain features were extracted. These features included sums
of smaller sequences of Fourier-transformed signals. This way, user-independent
model was trained using altogether 56 features.
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Fig. 2: To test the accuracy of the proposed method, two data sets from each
test person is needed. This figure shows how these data sets are used.

Fig. 3: The proposed method was compared to traditional user-independent
recognition.

The most descriptive features for each model were selected using a SFS
method (sequential forward selection, [9]). Moreover, to reduce the number
of misclassified windows, the final classification was done based on the majority
voting of the classification results of three adjacent windows. Therefore, when
an activity changes, a new activity can be detected when two adjacent windows
are classified as a new activity.

Experiments were done using two classifiers to be able to compare how the
proposed method works with different classifiers. These classifiers were linear
discriminant analysis (LDA), and quadratic discriminant analysis (QDA) as in
our previous studies we have noticed they are not only accurate but also com-
putationally light, and therefore, sufficient to be implemented to smartphones
and used 24/7.

5 Experiments

The proposed method was tested using the experiment protocol presented in
Figure 2. For this purpose, the data from each subject was divided into half,
one half was used for training (referred as data set A in Figure 2) and the other
half for testing (referred as data set B in Figure 2). The recognition rates are
then calculated using leave-one-out method. One subject’s data in turn was used
as validation data, and as explained in the Figures 2 and 3, training and test
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Table 1: Activity recognition rates of user-dependent models for each subject.

Accuracy Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Avg
LDA
proposed 77.7% 80.8% 89.5% 76.9% 86.0% 82.2%
traditional 76.5% 74.5% 87.7% 73.0% 83.3% 79.0%
improvement 1.6% 8.5 % 2.1 % 5.3 % 3.2% 4.1%
QDA
proposed 79.6% 83.6% 87.8% 78.3% 83.0% 82.5%
traditional 79.8% 82.5% 86.8% 75.5% 73.6% 79.6%
improvement -0.3% 1.3 % 1.2% 3.7 % 12.8% 3.6%

Table 2: Detection rates of the sensor fusion-based user-independent classifier.

Accuracy Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Avg
LDA 85.4% 79.9% 93.0% 84.9% 85.3% 85.6%
QDA 86.2% 82.2% 90.2% 87.1% 87.4% 86.6%

data were used to select features and train the recognition model.
The results are presented in Table 1. The shown accuracies are detection

rates of validation data, which was not used in feature selection or model training
process making it totally unknown to the recognition model. In addition, the
accuracies are obtained by calculating average of class-wise detection rates.

6 Discussion

The presented method improves classification accuracy in comparison to tra-
ditional single sensor-based user-independent model (Table 1). In nine cases
out of ten the proposed method improves the recognition accuracy, when the
method is tested with two classifiers and five persons. However, on average the
improvement is only modest, from 3 to 4 %.

According to our literature study, the most similar previous work compared
to this study is [7], where a method to personalize a model to estimate walking
speed was presented. This reduced the walking speed estimation error by almost
ten percent. When this improvement is compared to improvements gained in
this study (Table 1), it can be noted that they are lower. However, while the
method presented in [7] is quite similar to one presented in this study, here it is
applied in different way and to different problem. This explains the differences
in improvement percentages. Moreover, it is shown in [8] that personal models
can be over 20%-units more accurate than user-independent models. In order
to obtain such improvements, the sensor fusion-based model should be trained
using more sensors. This would ensure that the data set used to train the
personal model has less incorrect labels, which would lead to more accurate
user-dependent models. The labels used in this study were not not as accurate
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as they were suppose to be which can be seen from Table 2 showing the subject-
wise recognition rates of the sensor fusion-based user-independent model.

7 Conclusions

This study presented a method to obtain lightweight personal human activity
recognition models unobtrusively by using the sensors of a smartphone. The
preliminary results are promising, when the method is tested with two classifiers
and five persons, in nine cases out of ten the method improves the recognition
accuracy. However, the method still requires work, tests with more data sets
and sensors are needed. Online implementation is also a part of the future work.
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