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Abstract. DNA microarray has brought a difficult challenge for re-
searchers due to the high number of gene expression contained and the
small samples size. Therefore, feature selection has become an indispens-
able preprocessing step. In this paper we propose an ensemble for feature
selection based on combining rankings of features. The individual rankings
are combined with different aggregation methods, and a practical subset of
features is selected according to a data complexity measure –the inverse of
Fisher discriminant ratio–. The proposed ensemble, tested on seven differ-
ent DNA microarray datasets using a Support Vector Machine as classifier,
was able to obtain the best results in different scenarios.

1 Introduction

In recent years, the real-world scenarios have incremented considerably their di-
mension and size. Specifically, DNA microarray experiments generate a lot of
gene expressions for a low number of patients. In DNA microarray data, every
sample corresponds with a patient and each feature represents a gene expres-
sion coefficient corresponding to the abundance of Messenger Ribonucleic Acid

(mRNA) in a concrete sample. An important application of DNA microarray
data is to separate healthy patients from cancer patients based on their gene
expression “profile”. The DNA microarray datasets pose an enormous challenge
for feature selection researchers due to the high number of gene expression con-
tained and the small samples size.

Several studies have shown that most genes in a DNA microarray experiment
are not relevant for an accurate classification among different classes of the
problem [1]. To reduce the data dimensionality, feature selection preprocess
plays a crucial role in DNA microarray analysis. This process obtains an ideal
subset of relevant features of the data, eliminating irrelevant and redundant
information. As a result, the dimension of the datasets is reduced, allowing a
lower use of the storage size and an improvement of the computational time
of machine learning algorithms. In feature selection, there are two different
approaches when conducting the evaluation of the features of a dataset: (i)
individual evaluation and (ii) subset evaluation [2]. In the first case, a ranking
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of features is returned by assigning a level of relevance to each of these features.
The feature selection methods with this evaluation approach are also known as
ranker methods. In the second case, successive subsets of features are generated
and evaluated iteratively, according to an optimality criterion, until reaching the
final subset of selected features.

Machine learning methods have traditionally used a single learning model to
solve a given problem. However, it has been recently observed that by combin-
ing different learning models, better results could be obtained (called ensemble

learning). Ensemble learning has been normally applied to classification pro-
cess but can also be thought as a means of improving other machine learning
disciplines such as feature selection.

The idea of this paper is to use an ensemble of ranker methods instead
of a single method. Seven different ensemble configurations will be presented,
depending on the combination method used to generate the final ranking. Since
the ensemble is formed by ranker methods, a threshold is necessary to obtain a
practical subset of features. The novelty of the approach presented in this work
is that we use complexity measures to automatically establish this threshold,
in particular we employ the inverse of Fisher discriminant ratio. The results
obtained in a previous work on ensembles for feature selection [3] are taken
as baseline to compare the results of the proposed approach. An extensive
experimentation on different DNA microarray datasets, using a Support Vector
Machine (SVM) as a classifier, shows the adequacy of the proposed ensemble.

2 Ensemble feature selection

Datasets can be very large, both in number of samples or in number of features,
and can also be redundant, noisy, multivariate and nonlinear. In order to make
a correct choice, a user not only needs to know the domain and the characteris-
tics of each dataset well, but also is expected to understand technical details of
available algorithms [4]. In this sense, a possible way to confront this situation
is to use an ensemble of feature selection algorithms. Specifically, in this study
we use ranker methods, i.e. they return an ordered ranking of all the features.
Thus, a threshold is necessary in order to obtain a practical subset of features.
In this work, instead of choosing an arbitrary threshold, we have opted for the
use of a data complexity measure to establish the threshold value automatically
and tailored for the dataset, since they are a recent proposal to represent charac-
teristics of the data which are considered difficult in classification tasks beyond
estimates of error rates [5]. We assume that good candidate features would con-
tribute to decrease the complexity and must be maintained. Figure 1 shows the
proposed approach, and the pseudo-code can be seen in Algorithm 1.

Among the broad suite of feature selection methods available in the literature,
four well-known filter methods were chosen to conform the final ensemble (Chi-
Square [6], Information Gain [7], mRMR [8] and ReliefF [9]). The Ar rankings
generated using the different feature selection methods, all of them using the
same training data, must be combined in order to produce a unique final output
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Fig. 1: Diagram of the proposed ensemble method.

Algorithm 1: Pseudo-code of the proposed ensemble method

Data: R — number of ranker methods
Data: T — number of features to be selected
Data: V — vector of complexity measure values
Result: E — classification test error

1 Calculate and store in V the complexity measure value of each feature.
2 for each r from 1 to R do

3 Obtaining ranking Ar using feature selection method r

4 end

5 A = combining rankings Ar with a ranking combination method
6 Use V on A to obtain the optimal T value.
7 At = Select T top attributes from A

8 Build classifier SVM-RBF with the selected attributes At

9 Obtain test error E

A. The combination methods, also known as ‘aggregators’, are responsible for
conducting the fusion of several rankings in order to obtain a final ranking.
To perform the combination of the input rankings several different measures
are used, ranging from simple calculation to more sophisticated measures. The
different ranking combination functions selected to combine the several rankings
in this study were: SVM-Rank [10] (a SVM-based method for learning of ranking
functions), the Min, Median, Mean and GeomMean methods [11] (based on
simple arithmetic operations) and the Stuart [12] and RRA [13] methods (based
on statistical sorting distributions).

Finally, we have opted for the use of a data complexity measure to establish
the threshold value T to obtain a practical subset of features At. In this paper,
the measure selected was the Fisher discriminant ratio f [5], defined as:

f =

∑c

i=1,j=1,i6=j pipj(µi − µj)
2

∑c

i=1 piσ
2
i

, (1)
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where µi, σ
2
i , and pi are the mean, variance, and proportion of the ith class C,

respectively. The Fisher discriminant ratio values are calculated for each feature
of the dataset individually. The formula applied to establish the threshold and
obtain the final subset of features is defined as:

e[v] = α× 1/f + (1− α)× ρ (2)

where α is a parameter with value in the interval [0, 1] (α = 0.75 for this work),
ρ is the percentage of features retained (ranging from one to the total number of
features of the dataset) and 1/f is the inverse of the Fisher discriminant ratio.
A small complexity value e[v] represents an easier problem.

3 Experimental study

The experiments performed on seven DNA binary microarray datasets, which
are listed in Table 1, consisted of a comparison between the different ensemble
configurations described in the Section 2, taking as baseline the methods used
in a previous study [3]. The datasets originally divided into training and test
sets were maintained, whilst, those with only training set were randomly di-
vided using the common rule 2/3 for training and 1/3 for testing for the sake of
comparison. This division introduces a more challenging scenario since, in some
datasets, the distribution of the classes in the training set differs from the one
in the test set. Table 1 shows the number of attributes and samples and also
the distribution of the binary classes, indicating if the data is unbalanced.

Dataset Features Samples Train distribution (%) Test distribution (%)

Train Test

Colon 2 000 42 20 67 - 33 60 - 40
DLBCL 4 026 32 15 50 - 50 53 - 47
CNS 7 129 40 20 65 - 35 65 - 35
Leukemia 7 129 38 34 71 - 29 59 - 41
Lung 12 533 32 149 50 - 50 90 - 10
Prostate 12 600 102 34 49 - 51 26 - 74
Ovarian 15 154 169 84 35 - 65 38 - 62

Table 1: Binary microarray datasets employed in the experimental study.

A Support Vector Machine (SVM ) with a Radial Basis Function (RBF )
kernel has been chosen for comparing the proposed ensemble configurations with
the baseline methods in terms of classification error. The results obtained by
the different approaches are displayed in Table 2. This table shows the test
classification error of different methods and is divided in two parts: (i) the first
seven rows represent the different ensemble configurations (E-AggregatorMehod)
described in this paper (Section 2), and (ii) the last six rows correspond with
the baseline methods (obtained from [3]) consisting of an ensemble method (E2 )
and five individual filter methods.
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Ranker Colon DLBCL CNS Leukemia Lung Prostate Ovarian

E-SVMRank 20.00 ( 5 ) 6.67 ( 5 ) 35.00 ( 5 ) 20.59 ( 5 ) 8.05 ( 5 ) 26.47 ( 10 ) 14.29 ( 5 )
E-Min 15.00 ( 10 ) 13.33 ( 5 ) 40.00 ( 5 ) 8.82 ( 5 ) 0.67 ( 5 ) 26.47 ( 5 ) 0.00 ( 5 )
E-Median 15.00 ( 5 ) 13.33 ( 5 ) 35.00 ( 5 ) 11.77 ( 5 ) 3.36 ( 5 ) 26.47 ( 5 ) 0.00 ( 5 )
E-Mean 20.00 ( 5 ) 13.33 ( 5 ) 35.00 ( 5 ) 8.82 ( 5 ) 3.37 ( 5 ) 26.47 ( 5 ) 0.00 ( 5 )
E-GeomMean 20.00 ( 5 ) 13.33 ( 5 ) 25.00 ( 5 ) 8.82 ( 5 ) 3.36 ( 5 ) 26.47 ( 5 ) 0.00 ( 5 )
E-Stuart 20.00 ( 5 ) 13.33 ( 5 ) 30.00 ( 5 ) 11.77 ( 5 ) 5.37 ( 5 ) 26.47 ( 5 ) 0.00 ( 5 )
E-RRA 20.00 ( 5 ) 13.33 ( 5 ) 35.00 ( 5 ) 14.71 ( 5 ) 5.37 ( 5 ) 26.47 ( 5 ) 1.19 ( 5 )

E2 20.00 ( 34 ) 6.67 ( 47 ) 35.00 ( 60 ) 11.76 ( 36 ) 1.34 ( 40 ) 2.94 ( 89 ) 0.00 ( 37 )
CFS 15.00 ( 19 ) 6.67 ( 47 ) 35.00 ( 60 ) 11.76 ( 36 ) 1.34 ( 40 ) 2.94 ( 89 ) 0.00 ( 37 )
Cons 20.00 ( 3 ) 13.33 ( 2 ) 35.00 ( 3 ) 20.59 ( 1 ) 18.12 ( 1 ) 73.53 ( 4 ) 0.00 ( 3 )
INT 15.00 ( 16 ) 13.33 ( 36 ) 40.00 ( 47 ) 11.76 ( 36 ) 1.34 ( 40 ) 29.41 ( 73 ) 0.00 ( 27 )
InfoGain 15.00 ( 25 ) 6.67 ( 25 ) 35.00 ( 25 ) 11.76 ( 25 ) 0.67 ( 25 ) 2.94 ( 25 ) 1.19 ( 25 )
ReliefF 15.00 ( 25 ) 6.67 ( 25 ) 30.00 ( 25 ) 17.65 ( 25 ) 2.01 ( 25 ) 5.88 ( 25 ) 0.00 ( 25 )

Table 2: Test classification error for DNA microarray datasets. The value
shown in parenthesis represents the number of relevant features selected by each
method. The best error for each dataset is highlighted in bold face.

The experimental results demonstrate the adequacy of the proposed ensem-
ble, since they match or improve upon the results obtained in [3]. In fact, it
can be seen that some of the proposed ensemble configurations (E-Min, E-Mean

and E-GeomMean) improve the baseline error results on the Leukemia dataset,
and the E-GeomMean configuration improves the baseline error results on the
CNS dataset. In addition to this, at least one ensemble configuration matches
the best baseline error when it is applied on the datasets Colon, DLBCL, Lung
or Ovarian. In both cases, the proposed ensemble has the added benefit of
reducing significantly the dataset dimension (using only five features, in most
configurations, for the classification process). The Prostate dataset is the only
one that does not improve their results when the proposed ensemble is applied.
Notice that the Prostate dataset has been a big challenge for machine learning
algorithms since the training and test sets were extracted from different experi-
ments. Thus, the common assumption that the training and test data follow the
same distribution is, in this case, violated. In fact, in a previous work [14] we
have pointed out that some classifiers just assign all the samples to the minority
class, leading to a poor classification performance around 26% global accuracy,
as happens with our proposed ensemble.

4 Conclusions and discusion

DNA microarray data has brought a difficult challenge for researchers due to the
high number of gene expression contained and the small samples size. For these
reason, a feature selection preprocess is essential to confront the dimensionality
problem. In this paper, an ensemble for feature selection was presented. The
idea is to use an ensemble of methods rather than a single method, in order to
take advantage of their individual strengths and overcome their weak points at
the same time. This will have the added benefits of releasing the user from the
task of knowing technical details about the DNA microarray scenario.

The particularity of the proposed ensemble is that it works with ordered

281

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



rankings of features, and therefore, a threshold is necessary in order to obtain
a practical subset of features. Four well-known algorithms were chosen to form
part of the ensemble and the individual rankings were combined with different
combination methods. Since we have an ordered ranking of all the features we
have opted for the use of data complexity measures to establish the threshold
value, releasing the user from the task of choosing it in advance. In this study,
the inverse of Fisher discriminant ratio was selected as data complexity measure.
The experiments on seven DNA microarray datasets showed that our proposal
was able to obtain competitive results when compared with results achieved in
a previous work, with the added benefit of selecting automatically the threshold
to establish the final number of features to consider in the classification stage.
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