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Abstract.

RNA polymers are an important class of molecules: not only they are involved
in a variety of biological functions, from coding to decoding, from regulation to
expression of genes, but crucially, they are nowadays easily synthesizable, open-
ing interesting application scenarios in biotechnological and biomedical domains.
Here we propose a constructive machine learning framework to aid in the rational
design of such polymers. Using a graph kernel approach in a supervised setting we
define an importance notion over molecular parts. We then convert the set of most
important parts into specific sequence and structure constraints. Finally an inverse
folding algorithm uses these constraints to compute the desired RNA sequence.

1 Introduction

RNA macro molecules undergo cis-interactions and fold into stable structures. It is the
chemo-physical properties of the unbound portion of the RNA polymer together with
their 3D configuration that determines the function of the molecule, i.e. the type of
interactions that are feasible with other biological entities. Different types of functions
are currently classified in ~2400 different groups or families [2]. Crucially, differ-
ent sequences can fold into identical structures, a fact that makes the prediction of the
function of a given RNA sequence a hard task. Within biotechnological and biomed-
ical application development, e.g. RNA aptamers [4} [5], RNA nanoparticles [9]], or
CRISPR/cas9 systems [13], the design of RNA sequences with a desired structure, and
by proxy, with a desired function, is becoming of great interest.

In the following we will consider the case of the hammerhead ribozyme (Figure|[T).
This is a RNA molecule with therapeutic applications that catalyzes reversible cleavage
and joining reactions at a specific site within an RNA molecule.
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Fig. 1: Hammerhead ribozyme aligment and motif.
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The structural-sequence alignment of the rybozyme sequences identifies a con-
served motif in an unpaired region that is enclosed by three stems (paired regions)
with a variable nucleotide composition. The development of a computational method
capable to reliably construct a large number of sequences sharing the same function of
the hammerhead ribozyme can be a key step towards engineering artificial molecules
with regulatory capabilities. Note that the approach that we introduce is completely
generic and can be used to sample from any given set of functionally related RNAs.

2 Constraint learning framework

In the proposed framework, that we call RNASynth, we will assume that a set of RNA
sequences sharing the same function is made available, without assuming any other
a priori knowledge. The task is then to jointly identify the necessary constraints that
define the class membership and produce novel sequences belonging with high proba-
bility to the desired class. To this end we use a graph kernel approach in a supervised
setting to define an importance notion over parts of the structures. We then convert the
set of most important parts into specific label and structure constraints. Finally these
constraints are given in input to inverse folding algorithm (antaRNA [[L1] in our case)
to output the desired samples.

2.1 Graph kernel

An essential component of the proposed framework is a linear discriminant estimator:
this allows to explicitly access the discriminative importance of each feature which will
be later used to define the notion of part importance. In order to work with graphs in
input we make use of the graph kernel developed in [3]], called Neighborhood Subgraph
Pairwise Distance Kernel (NSPDK). NSPDK is an instance of a decomposition ker-
nel [10], where the “parts” in which the graph is decomposed are pairs of small near
neighborhood subgraphs of increasing radii 7 < 7,44. All pairs of such subgraphs
whose roots are at a distance not greater than d < d,,4; are considered as individual
features. The similarity notion is finally given as the fraction of features in common
between two graphs. Formally the relation is defined in terms of neighborhood sub-
graphs (i.e. subgraphs induced by the nodes at bounded distance from a root vertex) as:
R.q={(N}(G),N*(G),QG) : d(u,v) = d} thatis, a relation R, 4 that identifies pairs
of neighborhoods N of radius r whose roots u, v are exactly at distance d. The kernel
is then defined as:

krd(G,G') = Z 1pg~ar - 1pap (D

A,B € R, }(G)
A',B' € R, (G")

where R;;(G) is the inverse of the R relation and indicates the multi-set of all
pairs of neighborhoods of radius r with roots at distance d that exist in G, and where
1 denotes the indicator function and =2 the isomorphism between graphs. The final
kernel is then the sum of &, 4 kernels. The optimal bounds for the values of  and d are
typically obtained via cross validation.
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2.2 Importance notion

Kernels are generally used in their implicit form, i.e. to compute the dot product be-
tween two instances in the corresponding Reproducing Kernel Hilbert Space. Since
graph kernels yield in general descriptions with an exponential amount of features this
is the preferred practice. For NSPDK instead we use the hashing technique introduced
in [8] to obtain the explicit feature encoding of the graphs as sparse vectors in a very
high dimensional space: ®(G) € R™. This is possible since we can efficiently enumer-
ate all features of the NSPDK representation in quasi linear time. In this way learning
can happen in the primal form and we can employ a stochastic gradient descent (SGD)
algorithm [1]] to efficiently induce a linear estimator over binary classification problems.

We define the importance score S of a node u € G as the distance of the explicit
NSPDK representation of the neighborhood graph rooted in w with radius R = 1,4, +
dmaz> P(NE(G)) from a given hyperplane / with norm w and bias b :

SP(u, @) = ®(NE(G)) - w + b

The hyperplane £ is derived from the SVM solution to the binary classification problem
between sequences of interest vs. randomly permuted sequences. Given the norm w’
and bias b’ of the solution hyperplane h’, we let w = w’ and b = ﬁ/c)\

Intuitively, the neighborhood graph of radius R of a vertex v comprises all nodes
that can form NSPDK features with v and hence ® (NN} (G)) forms a partition over the
features ®(G). In this way the SVM score associated to a graph can be decomposed as

the sum of importance scores S over the nodes of the graph:

OG) W +V = > SEu,G).
ueV(G)

Finally the importance score of any subgraph H C G is defined as the sum of
importance scores for each node:

SUH.G)= Y Sp'(u,G),

uweV (H)

where V (H) denotes the vertex set of a subgraph H.

3 Inverse folding

Ant Colony Optimization (ACO) [6] is an optimization algorithm for problems that
can be reduced to finding good paths through graphs. The algorithm is inspired by the
principle of ant foraging: ants explore a terrain and evaluate foraging paths according
to their length, the presence of obstacles and the amount and quality of food sources at
the path’s end. The terrain is marked with a signal (pheromone) that tracks paths. As
time passes, more ants perceive and get influenced by the local pheromone information.
This information is then modified by the notion of evaporation whereby low quality
paths are forgotten while high quality ones are progressively reinforced.
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Fig. 2: Sequence information (1) and corresponding minimum free energy structure
(2). Constraints are position specific and can involve the type of nucleotides (3) or the
presence (parenthesis) or absence (dots) of base pairing (4). Unconstrained elements
are encoded with the dash symbol.

antaRNA [11]] uses ACO in order to produce RNA sequences that satisfy user spec-
ified constraints and fold in the desired structure. The virtual ants modify the sequence
construction graph (the graph representing the superposition of all possible sequences of
4 nucleotides) according to the sequence quality (i.e. number and degree of violation of
the constraints). antaRNA supports several types of constraints, among which: partial
secondary structure specification, partial sequence specification and Guanine-Cytosine
(GC) ratio specification. Secondary structure constraints are specified in dot-bracket
notation (i.e. with the explicit identification of pairing bases). Sequence constraints are
specified as position specific nucleotide types. Finally the GC ratio is the proportion of
G and C nucleotides present in a given sequence, a constraint which allows to tailor the
satisfying sequences to specific organisms.

3.1 Constraints learning

We derive structural and sequence constraints from important subgraphs identified in
each sequence. We start by computing the optimal minimum free energy (MFE) struc-
ture of each sequence. We then score each node with the importance notion detailed
in Section [2.2] and remove nodes that have an importance score below a user defined
threshold. Thresholding allows us to identify the corresponding connected components.
Since AntaRNA accepts only discrete constraints we define the sequence constrains as
being the nucleotides in an unpaired region that belong to components with a size larger
than a second user specified threshold. Analogously for structural constraints we extract
all base pairs between important nodes in components of user defined minimal size. In
the two cases the user can specify different thresholds. As for the desired GC ratio,
this can be computed directly from the input sequence. As an example of the generated
constraints consider Figure

4 Experimental results and conclusions

In order to perform an in-silico evaluation of the quality of the constructed sequences
we perform a learning curve analysis: we compare the predictive performance of a clas-
sifier trained over the original sequences against a classifier trained over a dataset that
additionally includes the sequences sampled by the proposed approach; if the samples
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belong to the same functional class and in addition are also non redundant, then we
expect a higher predictive performance for the latter case over a held out set, since the
training set has virtually increased.

We retrieve 42 seed sequences for family RF02276 (hammerhead rybozyme) from
the RFam database [2] and use a stochastic gradient descent SVM classifier over the
minimum free energy graphs computed using the RNAfold program [12]. Negative
sequences are obtained by di-nucleotide random shuffling of the seed sequences. The
code is available at https://github.com/fabriziocosta/RNAsynth.

Learning Curve Comparison for ROC

ROC Value
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Fig. 3: Area under the ROC curve predictive performance of a SGD SVM as a function
of the fraction of rybozyme sequences. Dots mark the mean ROC value, the boxplots
mark the median value and the quartiles. The continuous line is the optimal fit of a
saturating function.

From these experiments we see a significant effect when additional sequences are
added to an increasingly large training set in a ratio of 2 to 1. This encouraging re-
sults seem to indicate that it is possible to frame the construction of non coding RNA
sequences using the proposed approach where a generic data driven module identifies
constraints suitable for a domain specific inverse folding algorithm.

In another set of experiments (on the RFO0005 family) we have used RNASynth
to improve on atypical sequences. We used a state of the art context free grammar ap-
proach known as covariance model (CM) [7] to compute the RNA family membership
probability of each sequence. Using the sequences with the smallest score as seeds and
filtering the results according to the SVM predictor we were able to obtain sequences
with significantly higher membership probability in more than 13% of the cases.

Note that CMs can be also run in generative mode to emit sequences that belong
with highly probability to a modeled family and can therefore be used in a similar fash-
ion as RNASynth. This approach however has two major shortcomings: 1) it is para-
metric and 2) it can represent only a single (consensus) configuration. As a consequence
of the first limitation, CMs cannot deal with structures that exhibit complex interactions
known as pseudo-knots. The second limitation is of interest when a set of RNAs that
share the same function possess two or more structural configurations that differ sig-
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nificantly. For these reasons we need a more flexible approach, like RNASynth, that
is non-parametric and that can model an arbitrary number of structural configurations.
In future work we will demonstrate the advantage of these properties using the more
recent AntaRNA version to include pseudo-knots as constraints.
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