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Abstract. Fragmented sleep is commonly caused by arousals that can be
detected with the observation of electroencephalographic (EEG) signals.
As this is a time consuming task, automatization processes are required. A
method using signal processing and machine learning models, for arousal
detection, is presented. Relevant events are identified in the EEG signals
and in the electromyography, during the signal processing phase. After
discarding those events that do not meet the required characteristics, the
resulting set is used to extract multiple parameters. Several machine learn-
ing models — Fisher’s Linear Discriminant, Artificial Neural Networks and
Support Vector Machines — are fed with these parameters. The final pro-
posed model, a combination of the different individual models, was used
to conduct experiments on 26 patients, reporting a sensitivity of 0.72 and
a specificity of 0.89, while achieving an error of 0.13, in the arousal events
detection.

1 Introduction

The American Academy of Sleep Medicine (AASM) defines the electroencephalo-
graphic arousal as an abrupt shift in electroencephalogram (EEG) frequency,
including alpha, theta, and/or frequencies greater than 16 Hz, lasting at least
3 seconds and with at least 10 seconds of previous stable sleep [1]. Further-
more, during the rapid eye movement (REM) phase, a concurrent increase in
the submental electromyography (EMG), lasting at least 1 second, is needed.
As arousals cause fragmented sleep, sleep studies must identify these events.
Sleep studies are performed with a polysomnography (PSG), recording a set
of physiological signals from the patient — pneumological, electrophysiological
and contextual information —. An expert physician can observe the EEG and
EMG derivations to detect arousals. Since the recording of a PSG last a whole
night, the amount of data is huge, making the detection of EEG arousals a very
time-consuming task. Thus, automatic detection and analysis is desired.

In recent years, different approaches tried to solve this problem with different
techniques, highlighting the proposal of Alvarez-Estevez et al. [2], as is based in
the use of machine learning models after processing two EEG and one EMG
derivations, and it is the approach followed in this work.
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project TIN2013-40686P both partially supported by the European Union ERDF.
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2 Proposed Method

The proposed method includes the following phases: signal conditioning, rele-
vant intervals selection through a windowing processing, feature extraction after
grouping selected intervals and, finally, the use of different machine learning
models.

2.1 Signal Processing

Three signals are processed using different techniques: two EEG derivations
(C3/A2 and C4/A1) and one submental EMG. Whereas the EEGs are studied
in the frequency domain, the EMG is studied in time domain.

Signal Conditioning: It is well known that EEG and other related biosig-
nals usually present artifacts that can mislead their interpretation [3]. After
locating the QRS complexes on the ECG signal, we check if they are induc-
ing an artifact. Because of the short peak duration, the solution proposed is
to interpolate the affected segment, obtaining a near real signal as shown in
Figure 1.
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Fig. 1: EEG signal (a) before and (b) after signal conditioning.

Signal Windowing: After both EEG signals are conditioned, a windowing
process takes place. The three available signals, the two EEG derivations and
the submental EMG, are processed using a moving window.

The window used for the EEG derivation has a total duration of 3 seconds.
Between two consecutive studied instants the skipped time was 0.2 seconds. All
values were chosen empirically. According to the AASM, in order to score an
arousal there must be an abrupt change in the alpha (α = 8-12 Hz), theta
(θ = 4-7 Hz) and/or frequencies greater than 16 Hz. Transforming each window
into frequency domain, using a hamming function and the Fourier’s transform,
power is obtained following the formula: power = 1

n2

∑n
i=1 |X(n)|2 where n is

the number of samples and X the bandpassed signal.
For each frequency, a baseline over the average of the previous 10 seconds is

created. Intervals with abrupt changes are selected when the ratio between the
power and the baseline is greater than 1.5 — selected empirically —.Intervals
lasting less than 3 seconds are discarded.

The process carried with the EMG signal is similar but the windows displace-
ment was augmented to 0.4 seconds and the parameter studied in the window
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is the peak to peak amplitude. A baseline over the average of the previous 30
seconds is created, but the threshold used to select high activity intervals is 2.
Intervals lasting less than 3 seconds are discarded.

Intervals Grouping: To group the intervals of the different signals, an
approach based on the epochs division is followed. Identifying the epoch of the
interval using its middle point, a valid group is formed choosing one interval from
each signal. If there is no interval for one signal, no group is formed, whereas if
there is more than one, the one with the higher power on the frequencies band
mentioned in Section 2.1 is selected.

2.2 Machine Learning Models

From the previous groups, features are extracted and used as input to several
classifications models. We also investigate the combination of all of them.

Feature Extraction: Table 1 describes the complete set of features ex-
tracted from the signals. Regarding the EEG intervals, we include not only
the powers already obtained (Section 2.1), but also delta (δ = 0.5-4Hz) and
sigma (σ = 12-15Hz) powers. At last, Hjorth parameters are included, as
they have been demonstrated to be a good characterization of the EEG [4].

These parameters are: Activity = var(X(n)), Mobility =
√

Activity(X′(n))
Activity(X(n)) and

Complexity = Mobility(X′(n))
Mobility(X(n)) , where X is the signal and X ′ the first derivative.

Within the EMG interval, the only features included were those obtained in
Section 2.1.

Finally, we include two contextual features: the sleep stage, automatically
obtained following the method in [5]; and the common time during which both
EEG intervals appear simultaneously.

EEG features EMG features Contextual features

δ, θ, α, σ and > 16Hz total power Sum of amplitudes Sleep stage
δ, θ, α, σ and > 16Hz max. power Max. amplitude Common time
δ, θ, α, σ and > 16Hz min. power Min. amplitude
Activity, Mobility and Complexity Duration
Duration

Table 1: Intervals features description

Classification Models: As already mentioned, three classification models
were considered for the arousal detection task.

Fisher’s discriminant [6] uses a linear combination of the attributes at the
input, splitting the space into classes. Between each pair of classes, a linear
discriminant is defined. The goal is to maximize the distance between the means
of the two classes while minimizing the variance within each class.

Support Vector Machines (SVM) [7] are a supervised classification technique
that works by non linearly projecting the training data in the input space to a
feature space of higher (infinite) dimension by the use of a kernel function. In
this work, a RBF kernel was chosen because it maps the samples into a higher
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dimensional space, being able to handle the case when the relation between class
labels and attributes is nonlinear.

Finally, Artificial Neural Networks (ANN) are mathematical models biologi-
cally inspired on how the biological neurons work. Basically, they are composed
of a set of interconnected layers of simple computing nodes that operate as non-
linear summing devices. Different models of ANNs are available throughout the
literature depending on the architecture, on the process to adjust their weights,
or in the propagation of the information from the inputs to the outputs [8]. In
our case, a feedforward network with one hidden layer was used.

Combined Approach: The classification models were compared with
an approach that combines the classifiers following Shortliffe and Buchanan
(S&B) [9] certainty factors model. This model is based on the definition of
certainty factors (CF ). Given the hypothesis, i.e the presence of arousal, the
CF can get a value between (-1, 1) where 1 asserts the hypothesis and -1 denies
it — arousals are accepted with an empirical threshold of 0.7 —. The combi-
nation of two evidences — two individual classifiers outputs — referred to the
same hypothesis is made as follows:

CF ij =

⎧

⎪

⎨

⎪

⎩

CF i + CF j − CF i × CF j if CF i > 0,CF j > 0

CF i + CF j + CF i × CF j if CF i < 0,CF j < 0

(CF i + CF j)/(1−min(|CF i|, |CF j |)) if CF i × CF j < 0

2.3 Performance Measures

The performance of the method is evaluated in terms of following measures:
The classification error computed as the proportion of incorrectly classi-

fied positive and negative instances.
The sensitivity which quantifies the ability to correctly identify positive

instances. It is the proportion of true positives that are correctly identified.
The specificity which quantifies the ability to correctly identify negative

instances. It is the proportion of the true negatives that are correctly identified.
The AUC which compares simultaneously the sensitivity and specificity. In

a two class problem is the average between both values.

3 Experimental Procedure

In order to develop the arousal detection method, and also to validate it, we use
a set of PSG recordings from real patients. All the recordings used were taken
from the Sleep Heart Health Study (SHHS) [10].

The training and validation set used contains a total of 2353 arousals in 18094
epochs. As this set is unbalanced, an undersampling technique was applied, to
avoid biased classifiers. The testing set used contains a total of 688 arousals in
5878 epochs.

In order to configure the models before any experimentations, a ten-fold
cross validation was followed trying different parameters. With this procedure,
the selected values were C = 211, ε = 23 for the SVM, and 40 neurons in the
hidden layer for the ANN.
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4 Experimental Results

Four experiments were designed, varying the included parameters, with the re-
sults shown in Table 2. As ANN results are different with each execution, the
values shown are the average values of 15 executions. Best results are highlighted
in bold.

Error Sensitivity Specificity AUC Error Sensitivity Specificity AUC

Fisher’s
All the features

0.196 0.762 0.810 0.786
Without Hjorth
parameters

0.171 0.737 0.843 0.790
SVM 0.134 0.815 0.874 0.847 0.161 0.814 0.843 0.828
ANN 0.160 0.855 0.838 0.847 0.200 0.860 0.790 0.825

Fisher’s
Without sleep
stage

0.200 0.745 0.809 0.777
Without Hjorth
and sleep stage

0.171 0.721 0.845 0.783
SVM 0.163 0.811 0.841 0.826 0.190 0.840 0.806 0.823
ANN 0.182 0.835 0.815 0.825 0.202 0.851 0.790 0.821

Table 2: Test results. Best classifier values marked in bold face.

With the complete set of features, we achieved the best results, both in terms
of highest AUC and in terms of lower error. In the other experiments results
were similar, with the SVM obtaining the highest AUC, but the ANN achieving
the highest sensitivity. Focusing in the experiment with all the features, both
SVM and ANN perform better than Fisher’s discriminant. Although the AUC
is equal for both nonlinear classifiers, SVM error is lower. While ANN gets
higher sensitivity, SVM gets higher specificity. As the problem is unbalanced
and dominated by the negative class, higher specificity means lower error.

To check if classification capabilities could be improved, we proposed a com-
bined approach.

An independent set, containing 8416 arousals in 31080 epochs, is constructed
to test the generalization capabilities with the proposed combination of the in-
dividual classifiers. Results are shown in Table 3.

Error Sensitivity Specificity AUC

Fisher’s 0.181 0.784 0.815 0.799
SVM 0.160 0.816 0.834 0.825
ANN 0.230 0.884 0.734 0.809

S&B Combination 0.125 0.721 0.890 0.810

Table 3: Test results. Best classifier values marked in bold face.

As expected, the combination reduced the error achieved and the sensitivity,
as with this approach, arousals are only scored when individual classifiers tend
to agree. Thus, less arousals were scored but less errors were made. However,
global performance in terms of AUC was similar to the best individual case.
While the error reduction between the SVM and the S&B Combination was a
22 %, the AUC reduction was only a 2 %. Furthermore, this combination was
better (in terms of AUC) than the other two individual classifiers.
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5 Conclusions

This paper proposes a new method for automatic arousals detection. Two phases
summarize the method: signal processing and a machine learning approach. Sig-
nal processing includes the conditioning of the EEG to reduce the impact of
artifacts; the analysis of EEG derivations searching for abrupt power changes;
the analysis of EMG searching for high activity; and finally, the union of the
relevant intervals found in the previous steps. The machine learning approach
includes the extraction of features from the intervals selected before; the use of
several models — one linear: Fisher’s discriminant, and two non-linear: ANN
and SVM — in four different experiments; and finally, the proposal of a combi-
nation method of the individual classifiers.

It has been demonstrated that using the complete set of features proposed the
SVM achieves the best results, obtaining a sensitivity of 0.815 and a specificity
of 0.874, with an error of 0.134. A combined approach was tried to demonstrate
that individual classifiers performance was enhanced. In this case, the error is
reduced in a 22 % while the AUC is maintained.

More general and adaptative artifacts removing methods are proposed as
future work. The incorporation of features selection is also future work.
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