ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Gesture Recognition with a Convolutional Long
Short-Term Memory Recurrent Neural Network

Eleni Tsironi, Pablo Barros and Stefan Wermter *

University of Hamburg - Department of Computer Science
Vogt-Koelln-Strasse 30, D-22527 Hamburg - Germany
http://www.informatik.uni-hamburg.de/WTM/

Abstract. Inspired by the adequacy of convolutional neural networks in
implicit extraction of visual features and the efficiency of Long Short-Term
Memory Recurrent Neural Networks in dealing with long-range temporal
dependencies, we propose a Convolutional Long Short-Term Memory Re-
current Neural Network (CNNLSTM) for the problem of dynamic gesture
recognition. The model is able to successfully learn gestures varying in
duration and complexity and proves to be a significant base for further
development. Finally, the new gesture command TsironiGR-dataset for
human-robot interaction is presented for the evaluation of CNNLSTM.

1 Introduction

Gestures constitute a crucial element in human communication, as well as in
human-robot interaction, thus, gesture recognition has been a field of particular
interest in computer science. More specifically, dynamic gesture recognition is
a challenging task, since it requires the accurate detection of the body parts
involved in the gesture, their tracking and the interpretation of their sequential
movement. There have been many approaches proposed by the research com-
munity, differing in the sensor modalities (e.g. RGB cameras, depth sensors,
wearable devices); in the process of segmenting the body parts involved in the
gesture (e.g. skin colour segmentation by thresholding, motion analysis); in the
representation of the segmented body parts (e.g. hand orientation); and in the
recognition process of the gesture (e.g. Hidden Markov Models [1], Dynamic
Time Warping [2], Recurrent Neural Networks [3], Echo State Networks [4]).

Motivated by the efficiency of Convolutional Neural Networks (CNNs) in im-
plicit feature extraction and their successful application in form of Multichan-
nel Convolutional Neural Networks (MCCNNs) in gesture recognition [5] and
by the ability of Long Short-Term Memory recurrent neural networks (LSTMs)
with forget gates and peephole connections [6] in modeling long-range dependen-
cies of sequential data, this paper proposes a Convolutional Long Short-Term
Memory recurrent neural network (CNNLSTM) for the task of dynamic gesture
recognition. The proposed architecture aims to deal with the limitations caused
by the use of feedforward networks in sequential tasks such as the requirement
of using fixed-size windows and their lack of flexibility in learning sequences of

*This work was partially supported by the CAPES Brazilian Federal Agency for the Support
and Evaluation of Graduate Education (p.n.5951-13-5).

213

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

different sizes. At the same time, we want to avoid the process of explicit feature
extraction, by jointly training the CNN and the LSTM using the convolutional
layers as a trainable feature detector. The system proposed below requires the
input of an RGB camera and uses motion representation in order to extract the
body parts involved in the gesture. Similar forms of combinations of CNNs and
LSTMs have been successfully used in other sequential tasks such as activity
recognition [7] and speech recognition [8], reinforcing the assumption that such
a model can also yield a significant improvement in the field of dynamic gesture
recognition. Finally, CNNLSTM is a type of an Elman recurrent neural net-
work and consequently, can be trained with Back Propagation Through Time
(BPTT). To evaluate our model, we create a dynamic gesture corpus with nine
different Human-Robot Interaction commands. We show that our model out-
performs the common Convolutional Neural Network and it is able to learn the
temporal aspects of the gestures.

2 CNNLSTM

The proposed CNNLSTM architecture for dynamic gesture recognition con-
sists of two consecutive convolutional layers, a flattening layer, a Long Short-
Term Memory recurrent layer and a softmax output layer. At each time-step a
differential image [9] A is given as input to the first convolutional layer. The
differential image is the output of the segmentation process and represents the
body motion. More precisely, the segmentation process that generates a differ-
ential image is a three-frame differencing operation, followed by a bitwise AN D
operation, as described in equation 1.

A= (I = Ii—1) N1 — 1), (1)

where Iy, I;_1, I;11 are the frames at the current time-step ¢, the previous time-
step t — 1 and the next time-step t + 1 respectively, and A is the bitwise AN D
operation.

Once the differential image given as input to the CNNLSTM is processed
by the first convolutional layer, a set of feature maps is produced, which is
further processed by the second convolutional layer. Thereupon, the feature
maps produced by the second convolutional layer are flattened to form the input
for the hidden layer, which in Figure 1, for better visualisation, is depicted
only by two units. The vector is fed to the LSTM blocks of the recurrent
layer, which makes use of the past context. The output of the recurrent layer is
squashed by a softmax activation function, which assigns a gesture label to the
current differential image. CNNLSTM is a deep recurrent architecture that can
be trained with standard Backpropagation Through Time.

A convolutional layer consists of two consecutive convolution and max-pooling
operations coupled by means of a squashing function as shown in the equation

214

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Flattening LSTM Output
Layer Recurrent Layer Layer
Input Convolutional Convolutional
Layer Layer 1 Layer 2
f—/% /_Aﬁ

:

{

first convolution
first max-pooling

second convolution
second max-pooling

Fig. 1: The architecture of the proposed CNNLSTM.

below:

xé = tanh(poolingmam(zéfl * kij) + bé-), (2)

where 2! are the feature maps produced by the convolutional layer I, !

T are
J J

the feature maps of the previous convolutional layer | — 1, k;; are the trained

convolution kernels and bé» the additive bias. Finally, poolingmq.(-) is the max-

pooling operation and tanh(-) is the hyperbolic activation function.

An LSTM block of the recurrent layer is defined by the following set of equa-
tions.

it = 0 (2" Wai + he—1 Whi + cem1Wei + bi),
ft = O'(SCtWIf + ht,1th + thlwcf + bf),
Ot = U(xtho + ht—IWho + Ctho + bo)a (3)
ct = froci_q1 + i otanh(z' Wee + hi—1Whe + be),
ht = oy o tanh(cy),

where z! is the input to the LSTM block, 4, fi, o;, ci, hs are the input gate,
the forget gate, the output gate, the cell state and the output of the LSTM
block respectively at the current time step t. Wy, Wiy, Wy, are the weights
between the input layer and the input gate, the forget gate and the output

gate respectively. Wy, Wi, Wi, are the weights between the hidden recurrent
layer and the forget gate, the input gate and the output gate of the memory

215

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

block respectively. We;, Wer, We, are the weights between the cell state and
the input gate, the forget gate and the output gate respectively and finally, b;,
bs, b, are the additive biases of the input gate, the forget gate and the output
gate respectively. The set of activation functions consists of the sigmoid function
o(+), the element-wise multiplication o(-) and the hyperbolic activation function
tanh(-).

3 Experiments & Results

For the evaluation of the proposed CNNLSTM architecture the new gesture
command TsironiGR-dataset for human-robot interaction was created. The
dataset includes nine gesture classes; “abort”, “circle”, “hello”, “no”, “stop”,
“warn”, “turn left”, “turn” and “turn right”, as shown in Figure 2. For the
collection of the dataset, six subjects were recorded and each of them performed
each gesture approximately ten times in a random order. Each of the gesture
sequences is segmented and labeled with their correct gesture class label. The
dataset consists of 543 gesture sequences in total. The gestures were captured
by an RGB camera with a resolution of 640x480, recorded with a frame rate of
30 FPS. For the experiments the dataset was split in 60% for training, 20% for
validation and 20% for testing. Each experiment was repeated five times.

Hello

Warn

Turn Right

Fig. 2: The motion pattern of each of the training gesture commands

The performance of the CNNLSTM was compared with a common CNN base-
line system. The CNN architecture consists of two consecutive convolutional
layers, connected to a fully-connected hidden layer, which consequently is con-
nected to a softmax output layer. The input to the network is a motion history

216

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

image, which consists of the accumulation of all the subsequent differential im-
ages of a gesture sequence. The Loss function used for the training the CNN is
a negative log likelihood function and is trained with Backpropagation.

For the training of the CNN baseline model and the CNNLSTM model pre-
sented in the previous section, we randomly initialised all the model weights,
except for the biases which were initialised with zeros. At the beginning of each
epoch, the order of the training dataset was randomised. The backward pass of
the CNNLSTM, and therefore the weight update, was done only after a whole
sequence had been propagated forward through the network. The error signals
and therefore the weight updates, have been calculated with respect to the mean
of cross entropy loss function. During the testing phase, each gesture sequence
has been classified separately. More specifically, the classifications of each of
the differential images belonging to the sequence were processed to compute the
gesture label with the highest frequency and assign it as a label to the whole
gesture sequence.

The input size for the differential and motion history images was resized to
64x48, the convolutional layers had the same parameters in both architectures
with the size of the first layer kernels being 11x11, the size of the max-pooling
window 2x2 and the number of feature maps 5. The size of the convolution kernel
of the second convolutional layer was 6x6, the size of the second max-pooling
window 2x2 and the number of the produced feature maps 10. The difference
between the two architectures concerns the type of the fully-connected layers
following the flattening of the output of the second convolutional layer. The
hidden fully-connected layer of the CNN is a simple feedforward hidden layer
and that of the CNNLSTM is a hidden recurrent LSTM layer. The number of
the hidden neurons of the fully-connected layer of the CNN was 500, the same
as the number of the LSTM blocks in the recurrent fully-connected layer of the
CNNLSTM model. The proposed CNNLSTM outperformed the simple CNN in
terms of accuracy, precision, recall and F1l-measure as shown in Table 1. We
notice as well, that in the five times each model was run, the CNNLSTM seems
to be more consistent, with smaller turbulences, as revealed by the standard
deviation. The CNNLSTM converged quite fast in all runs, around the 19"
epoch. Moreover, the label frame patterns per sequence are very consistent,
with the majority of the frames either being all correctly classified or just the
first few frames being misclassified, which can be explained by the fact that the
first frames in most gestures may be confusing since all gestures in the dataset
were performed starting from the same resting position.

Model Accuracy Precision Recall Fl-measure
CNN 77.78%+3.75% | 79.87%+3.64% | 77.78%+4.19% | 76.56% +£4.27%
CNNLSTM | 91.67%+1.13% | 92.25% +1.02% | 91.67%+1.13% | 91.63% +1.15%

Table 1: Metrics table for the CNN and CNNLSTM models

217

ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

4 Conclusion

We presented a Convolutional Long Short-Term Memory Recurrent Neural
Network (CNNLSTM) architecture for the task of gesture recognition. The
model was evaluated on the new gesture command TsironiGR-dataset, and out-
performed the common CNN baseline. CNNLSTM extends the simple CNN by
modelling the temporal evolution of the body postures while the gesture is a
performed, which is a crucial element for gesture recognition. Therefore, the
proposed model exhibited very good performance in sequence level classification
and could be further improved by training the CNNLSTM with a Connectionist
Temporal Classification (CTC) loss function [10]. With CTC we can eliminate
the need for training the model on temporally pre-segmented gestures, and at
the same time get a classification label immediately after a whole sequence is
recognised, overcoming in this way the limitations of frame level classification in
the task of gesture recognition. Moreover, the system can be also easily extended
to accept three-dimensional input such as depth information.

References

[1] Gerhard Rigoll, Andreas Kosmala, and Stefan Eickeler. High performance real-time ges-
ture recognition using hidden markov models. In Gesture and Sign Language in Human-
Computer Interaction, pages 69—-80. Springer, 1998.

[2] Trevor Darrell and Alex Pentland. Space-time gestures. In Computer Vision and Pattern
Recognition, 1993. Proceedings CVPR’93., 1993 IEEE Computer Society Conference on,
pages 335-340. IEEE, 1993.

[3] Natalia Neverova, Christian Wolf, Giacomo Paci, Giacomo Sommavilla, Graham W Tay-
lor, and Florian Nebout. A multi-scale approach to gesture detection and recognition. In
Computer Vision Workshops (ICCVW), 2018 IEEE International Conference on, pages
484-491. IEEE, 2013.

[4] Doreen Jirak, Pablo Barros, and Stefan Wermter. Dynamic gesture recognition using echo
state networks. pages 475-480, 2015.

[5] Pablo Barros, German I. Parisi, Doreen Jirak, and Stephan Wermter. Real-time gesture
recognition using a humanoid robot with a deep neural architecture. In Humanotid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference on, pages 646-651, Nov
2014.

[6] Felix A Gers, Nicol N Schraudolph, and Jiirgen Schmidhuber. Learning precise timing
with lstm recurrent networks. The Journal of Machine Learning Research, 3:115-143,
2003.

[7] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. 2014.

[8] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Hasim Sak. Convolutional, long
short-term memory, fully connected deep neural networks. In in Proceedings ICASSP,
2015.

[9] Robert T Collins, Alan Lipton, Takeo Kanade, Hironobu Fujiyoshi, David Duggins, Yang-
hai Tsin, David Tolliver, Nobuyoshi Enomoto, Osamu Hasegawa, Peter Burt, et al. A
system for video surveillance and monitoring, volume 2. Carnegie Mellon University, the
Robotics Institute Pittsburg, 2000.

[10] Alex Graves et al. Supervised sequence labelling with recurrent neural networks, volume
385. Springer, 2012.

218

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

