
Study on the loss of information caused by the
"positivation" of graph kernels for 3D shapes

Gaëlle Loosli1

1- Clermont Université - Université Blaise Pascal
CNRS, UMR 6158, LIMOS

Aubière, France

Abstract. In the presented experimental study, we compare the classi-
fication power of two variations of the same graph kernel. One variation
is designed to produce semi-definite positive kernel matrices (Kmatching)
and is an approximation of the other one, which is indefinite (Kmax). We
show that using adaptated tools to deal with indefiniteness (KSVM), the
original indefinite kernel outperforms its positive definite approximate ver-
sion. We also propose a slight improvement of the KSVM method, which
produces non sparse solutions, by adding a fast post-processing step that
gives a sparser solution.

1 Introduction

Until recent developments in the usage of indefinite kernels [1, 2, 3], it was
mandatory to produce positive definite kernels in order to use SVM. To do so, in
particular in graph kernels, it is quite usual to add treatment steps that garan-
tee the definite-positiveness of the produced kernel. In this paper we question
the impact of such steps on the classification ability of the kernels, through an
empirical study on 3D shapes classification from SHREC’09 database [4]. In
this study, we compare the classification results using two versions of the bag
of paths kernel. On the one hand, we implement the Kmax kernel [5] which
happens to be indefinite in general but which corresponds to the intention of the
authors in the design of the kernel. On the other hand, we use its approximate
positive definite version named Kmatching, that conveniently avoids the usage
of the max operator, responsible for the indefiniteness of Kmax. For the SVM
solver, we use KSVM [1], (for SVM in Krĕın spaces). Indeed, to make a fair
comparison we need a solver that provides a solution in the original indefinite
space of Kmax. In [1], the interest of KSVM is shown compared to methods that
transform or project indefinite kernels. In this study we address a slightly differ-
ent question: the adaptation of the kernel to the mathematical requirements of
standard solvers is included in the kernel design. We intend to exhibit the fact
that the indefinite part of the kernel contains pertinent information. In section
1.1 we provide the definition of the kernels we use. In section 1.2 we describe
KSVM and in section 2 we propose a slight improvement on the sparcity of
the solution. In section 3 we present our experimental study, that covers the
validation of the KSVM post processing step (section 3.1) and a comparison of
many kernels computed from SHREC dataset and the classification performance
comparison between Kmax and Kmatching (sections 3.1.1 and 3.1.2). Section 4
concludes this study.

129

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

1.1 Graph kernels

The two graph kernels we use in this study are taken from [5]. The compar-
ison between two graphs is based on the comparisons between paths that are
extracted from each graph. A first kernel is defined to compare two paths h and
h′:

KL(h, h
′) = Kv

(

l(v1), l(v
′
1)
)

n∏

i=2

Ke

(

l(vi−1, vi), l(v
′
i−1, v

′
i)
)

Kv

(

l(vi), l(v
′
i)
)

(1)

where vi are the vertices of a path h of length n, (vi−1, vi) denotes an edge, Kv

is a kernel fonction on the vertex labels (obtained through function �) and Ke is
a kernel function on the edges labels. Let’s now suppose that sets of paths P1

and P2 have been extracted from graphs G1 and G2. The graph kernels we use
are defined as follows:

Kmax(G1, G2) =
1

2

(

1

|P1|
∑

i:hi∈P1

max
j:hj∈P2

KL(hi, hj) +
1

|P2|
∑

i:hi∈P2

max
j:hj∈P1

KL(hi, hj)
)

(2)
This kernel being non positive definite due to the max operator, it is approx-
imated by a Gaussian kernel KdL

(hi, hj) = exp(
KL(hi,hj)

2

−2σ2) which gives the
matching kernel:

Kmatching(G1, G2) =
1

|P1|
1

|P2|
∑

i:hi∈P1

∑

j:hj∈P2

KdL(hi, hj) (3)

In both cases, the idea is to retrieve the contribution of the most matching pairs
of paths: only the most matching in the first case, and mostly the most matching
in the second.

1.2 KSVM, SVM in Krĕın spaces

We give results from [1], based on [6], where SVM in Krĕın spaces (more precisely
in RKKS - Reproducing Kernel Krĕın Space - that are indefinite inner product
spaces endowed with a Hilbertian topology, in which the positiveness axiom is
not required) are defined as eq.4. Let xi with i ∈ [1..�] be the training examples
and yi their labels. The primal problem is:

⎧
⎪⎪⎨

⎪⎪⎩

stab
f∈K,b∈IR

1
2
〈f, f〉K

s.t.
�∑

i=1

max
(
0, 1− yi(f(xi) + b)

) ≤ τ .
(4)

where stab means stabilize. The stabilization problem arizes as the solution of
quadratic problems in Krĕın spaces. It means that in general the solution is
a saddle point and not an extremum, which means that standard optimization
techniques can’t be used as is. The representer theorem in Krĕın space gives:

⎧
⎪⎨

⎪⎩

f(.) =

�∑

i=1

αiyik(xi, .)

with −C ≤ αi ≤ C ∀i ∈ [1..�]

(5)

130

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

and the dual formualtion is given in eq.6. The stabilization setting is unusual
but the authors show that solving system 4 leads to algorithm 1, where G is the
kernel matrix such that G(i, j) = yiyjk(xi, xj).

⎧
⎪⎨

⎪⎩

stab
α

−1

2
α�Gα+ α�1

with α�y = 0
and −C ≤ αi ≤ C ∀i ∈ [1..�]

(6)

Algorithm 1 KSVM
Require: y, C and G

[U,D] = EigenDecomposition(G)
G̃ = USDU� with S=sign(D)
[α̃,b] = SvmSolver(y,G̃,C)
α = USU�α̃
return α,b

2 Sparse KSVM

In algorithm 1, the produced solution α is not sparse. Having a non sparse
solution is not really desirable, this is the reason why we explore a simple trick
to reduce the solution size. We start from the observation that with G = UDU�

and G̃ = UDSU�, we have

α = USU�α̃
U�−1

D−1DSU�α̃
(U�−1

D−1U−1)(USDU�)α̃
G¯1G̃α̃

Gα = G̃α̃

(7)

This says that all training points have exactly the same evaluation value f(x)
in each representation (Krĕın and Hilbert). Note here that the solution in the
corresponding Hilbert space α̃ is sparse as usual SVM. To obtain an approximate
sparse α, a simple way is to force non support vectors in the Hilbert space to
have a nul multiplier α in the original Krĕın space by solving the following linear
system:

G:,svαsv = G̃:,svα̃sv (8)

where sv designates support vectors in the corresponding Hilbert space. The
system is over-determined and we use a QR solver.

3 Empirical study

We first evaluate the interest of sparse KSVM. Then we describe our experiments
on graph kernels. All experiments are done in Matlab using KSVM code provided
by the authors, except for linear programming which is done using CPLEX. For
experiments in a multiclass setting, the 1vsAll setting is applied.

3.1 Evaluation of sparse KSVM

For this set of experiments, we use synthetic datasets (checkers and apple-
banana) to illustrate the impact of imposing sparseness. We use a tanh kernel

131

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

without optimization on it, we just check it is really indefinite: the least eigen-
value is on average between -50 and -400 depending on the datasets. For each
problem shape (checkers and apple-banana), we generate 6 training sets, of 3
sizes (300 - 1000 - 2000), and 2 levels of overlapping (none or very low, and
high). Each configuration is generated and trained 10 times, and all test sets are
of size 10000. We monitored the accuracy, training and testing time, and the
solution size, for KSVM and sparse KSVM. For the sake of comparison, we also
added LP-SVM since it can be regarded as an alternative method for indefinite
kernels [2]. Figure 1 shows the average results over all the configurations. We
observe that in terms of accuracy, all methods are similar, with a small loss
of accuracy for sparse KSVM. Concerning the solution size (hence the testing
time), the gain of sparse KSVM over KSVM is obvious. LP-SVM is better from
that point of view, but the training time explodes. Overall, sparse KSVM seems
to be a good compromise, at least on those experiments.

Fig. 1: We compare KSVM, sparse KSVM and LP-SVM on various sets of synthetics
data, in terms of accuracy, solution size, training time and testing time. We observe
that sparse KSVM is a good compromise.

3.1.1 SHREC’09

In this part we compare graph kernels extracted from SHREC 2009 [4] dataset.
This dataset contains 200 shapes from 10 main classes (humans, teapots, planes,
birds, chairs, etc.). Each main class has 2 subclasses that are structuraly similar
(for instance chairs and tables). For the evaluation of class prediction, this is
taken into account by the attribution of 1 point if the shape is classified in its
highly relevant class and 0.5 in its marginally relevant class. The accuracy is
computed for the query set represented on fig.2a.
From each shape we extract 8 different graphs following the method proposed
in [7]. For each of the 8 sets of graphs, we compute 196 Kmax kernels and 196
Kmatching kernels, which correspond to various sets of parameters (kernels on
edges and vertices are Gaussians for which we vary σ from 10 to 107, and we also
vary the maximum path length from 1 to 4.). In total we obtain 1568 indefinite
kernels and as many SDP kernels. For each pair of kernels (Kmax and Kmatching

computed of the same set of graphs with the same hyper parameters), we train
a KSVM and a SVM (with a cross-validation on the C parameter). Figure 2b

132

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

(a) The query set from SHREC’09

0 200 400 600 800 1000 1200 1400 1600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

List of kernels, each type is
ordered bu increasing accuracy

A
cc

ur
ac

y
on

 th
e

qu
er

y
se

t (
10

 s
ha

pe
s)

Kmatching

Kmax − KSVM

Kmax − sKSVM

(b) Classification accuracy

Fig. 2: This figure summarizes the classification accuracy on the query set, for each
computed kernel for Kmax and Kmatching. In the case of Kmax, the training is done
using KSVM and sparse KSVM (noted sKSVM). Each set of results is ordered by
classification accuracy on the query set. Kmax kernels outperform Kmatching kernels
and we also observe that the sparse KSVM is as good as KSVM alone.

reports results in term of classification accuracy. On average Kmax outperforms
Kmatching.

3.1.2 SHREC’08

From SHREC’08 [8], we extract only one set of graphs. We have 145 training
shapes from 12 classes, which makes it a difficult dataset for multiclass learning.
The validation set is made of 425 shapes, and we also have a query (test) set
of 76 shapes. Each shape belongs to one class so the accuracy is computed in a
classic way contrarely to the previous experiment. Figure 3a gives performances
for the validation set. Contrarely to the previous dataset, the task is much more
difficult, and we observe that Kmatching is by far outperformed by its indefinite
version Kmax.

4 Conclusion

In this paper we present an emprical study of the potential loss of information
implied by kernel positivation strategies. While not being exhaustive since it is
based on one type of graph kernel and two datasets, it outlines the fact that one
should not take for granted that semi-definite positive kernels are what we need.
Another message that can be assessed by this study is that is may be intersting
for kernel designers to define their kernels relaxing the positive definite constraint
now that adapted solvers are available.

133

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

List of kernels, each type
is sorted by increasing accuracy

A
cc

ur
ac

y
on

 th
e

va
lid

at
io

n
se

t

Kmax −KSVM

Kmax −sKSVM

Kmatching

(a) Classification accuracy on validation set

Kmatching Kmax Kmax

SVM KSVM s-KSVM
52.63% 68.42% 65.79%

(b) Results on the query set

Fig. 3: Figure (a) summarizes the classification accuracy on the validation set, for
each computed kernel for Kmax and Kmatching. In the case of Kmax, the training
is done using KSVM and sparse KSVM (noted sKSVM). Each set of results is or-
dered by classification accuracy on the validation set. Kmax kernels clearly outperform
Kmatching kernels and we also observe that the sparse KSVM is almost as good as
KSVM alone. On table (b), we provide the test accuracy on the query set for the best
(from validation) kernel of each type.

References
[1] Gaelle Loosli, Stephane Canu, and Cheng Soon Ong. Learning svm in krein spaces. IEEE

Transactions on Pattern Analysis & Machine Intelligence, preprint(preprint):preprint,
2015.

[2] Ibrahim M Alabdulmohsin and Xiangliang Zhang Xin Gao. Support vector machines with
indefinite kernels. In Asian Conference on Machine Learning, ACML, 2014.

[3] Frank-Michael Schleif and Peter Tino. Indefinite proximity learning: A review. Neural
computation, 2015.

[4] J Hartveldt, Michela Spagnuolo, Apostolos Axenopoulos, Silvia Biasotti, Petros Daras,
Helin Dutagaci, Takahiko Furuya, Afzal Godil, Xiaolan Li, Athanasios Mademlis, et al.
Shrec’09 track: Structural shape retrieval on watertight models. In 3DOR, pages 77–83,
2009.

[5] Frédéric Suard, Alain Rakotomamonjy, and Abdelaziz Benrshrair. Kernel on bag of paths
for measuring similarity of shapes. In ESANN, pages 355–360, 2007.

[6] Cheng Soon Ong, Xavier Mary, Stéphane Canu, and Alexander J. Smola. Learning with
non-positive kernels. In ICML ’04: Proceedings of the twenty-first international conference
on Machine learning, page 81, New York, NY, USA, 2004. ACM.

[7] Vincent Barra and Silvia Biasotti. 3d shape retrieval using kernels on extended reeb graphs.
Pattern Recognition, 46(11):2985–2999, 2013.

[8] Daniela Giorgi and Simone Marini. Shape retrieval contest 2008: classification of watertight
models. 2008.

134

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

