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Abstract. In the presented experimental study, we compare the classi-
fication power of two variations of the same graph kernel. One variation
is designed to produce semi-definite positive kernel matrices (Kmatching)
and is an approximation of the other one, which is indefinite (Kmax). We
show that using adaptated tools to deal with indefiniteness (KSVM), the
original indefinite kernel outperforms its positive definite approximate ver-
sion. We also propose a slight improvement of the KSVM method, which
produces non sparse solutions, by adding a fast post-processing step that
gives a sparser solution.

1 Introduction

Until recent developments in the usage of indefinite kernels [1, 2, 3], it was
mandatory to produce positive definite kernels in order to use SVM. To do so, in
particular in graph kernels, it is quite usual to add treatment steps that garan-
tee the definite-positiveness of the produced kernel. In this paper we question
the impact of such steps on the classification ability of the kernels, through an
empirical study on 3D shapes classification from SHREC’09 database [4]. In
this study, we compare the classification results using two versions of the bag
of paths kernel. On the one hand, we implement the Kmax kernel [5] which
happens to be indefinite in general but which corresponds to the intention of the
authors in the design of the kernel. On the other hand, we use its approximate
positive definite version named Kmatching, that conveniently avoids the usage
of the max operator, responsible for the indefiniteness of Kmax. For the SVM
solver, we use KSVM [1], (for SVM in Krĕın spaces). Indeed, to make a fair
comparison we need a solver that provides a solution in the original indefinite
space of Kmax. In [1], the interest of KSVM is shown compared to methods that
transform or project indefinite kernels. In this study we address a slightly differ-
ent question: the adaptation of the kernel to the mathematical requirements of
standard solvers is included in the kernel design. We intend to exhibit the fact
that the indefinite part of the kernel contains pertinent information. In section
1.1 we provide the definition of the kernels we use. In section 1.2 we describe
KSVM and in section 2 we propose a slight improvement on the sparcity of
the solution. In section 3 we present our experimental study, that covers the
validation of the KSVM post processing step (section 3.1) and a comparison of
many kernels computed from SHREC dataset and the classification performance
comparison between Kmax and Kmatching (sections 3.1.1 and 3.1.2). Section 4
concludes this study.
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1.1 Graph kernels

The two graph kernels we use in this study are taken from [5]. The compar-
ison between two graphs is based on the comparisons between paths that are
extracted from each graph. A first kernel is defined to compare two paths h and
h′:

KL(h, h
′) = Kv

(

l(v1), l(v
′
1)
)
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i=2

Ke

(
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(1)

where vi are the vertices of a path h of length n, (vi−1, vi) denotes an edge, Kv

is a kernel fonction on the vertex labels (obtained through function �) and Ke is
a kernel function on the edges labels. Let’s now suppose that sets of paths P1

and P2 have been extracted from graphs G1 and G2. The graph kernels we use
are defined as follows:
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This kernel being non positive definite due to the max operator, it is approx-
imated by a Gaussian kernel KdL

(hi, hj) = exp(
KL(hi,hj)

2

−2σ2 ) which gives the
matching kernel:
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1
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1
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In both cases, the idea is to retrieve the contribution of the most matching pairs
of paths: only the most matching in the first case, and mostly the most matching
in the second.

1.2 KSVM, SVM in Krĕın spaces

We give results from [1], based on [6], where SVM in Krĕın spaces (more precisely
in RKKS - Reproducing Kernel Krĕın Space - that are indefinite inner product
spaces endowed with a Hilbertian topology, in which the positiveness axiom is
not required) are defined as eq.4. Let xi with i ∈ [1..�] be the training examples
and yi their labels. The primal problem is:

⎧
⎪⎪⎨

⎪⎪⎩

stab
f∈K,b∈IR

1
2
〈f, f〉K

s.t.
�∑

i=1
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(
0, 1− yi(f(xi) + b)

) ≤ τ .
(4)

where stab means stabilize. The stabilization problem arizes as the solution of
quadratic problems in Krĕın spaces. It means that in general the solution is
a saddle point and not an extremum, which means that standard optimization
techniques can’t be used as is. The representer theorem in Krĕın space gives:

⎧
⎪⎨

⎪⎩

f(.) =

�∑

i=1

αiyik(xi, .)

with −C ≤ αi ≤ C ∀i ∈ [1..�]

(5)
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and the dual formualtion is given in eq.6. The stabilization setting is unusual
but the authors show that solving system 4 leads to algorithm 1, where G is the
kernel matrix such that G(i, j) = yiyjk(xi, xj).

⎧
⎪⎨

⎪⎩

stab
α

−1

2
α�Gα+ α�1

with α�y = 0
and −C ≤ αi ≤ C ∀i ∈ [1..�]

(6)

Algorithm 1 KSVM
Require: y, C and G

[U,D] = EigenDecomposition(G)
G̃ = USDU� with S=sign(D)
[α̃,b] = SvmSolver(y,G̃,C)
α = USU�α̃
return α,b

2 Sparse KSVM

In algorithm 1, the produced solution α is not sparse. Having a non sparse
solution is not really desirable, this is the reason why we explore a simple trick
to reduce the solution size. We start from the observation that with G = UDU�

and G̃ = UDSU�, we have

α = USU�α̃
U�−1

D−1DSU�α̃
(U�−1

D−1U−1)(USDU�)α̃
G¯1G̃α̃

Gα = G̃α̃

(7)

This says that all training points have exactly the same evaluation value f(x)
in each representation (Krĕın and Hilbert). Note here that the solution in the
corresponding Hilbert space α̃ is sparse as usual SVM. To obtain an approximate
sparse α, a simple way is to force non support vectors in the Hilbert space to
have a nul multiplier α in the original Krĕın space by solving the following linear
system:

G:,svαsv = G̃:,svα̃sv (8)

where sv designates support vectors in the corresponding Hilbert space. The
system is over-determined and we use a QR solver.

3 Empirical study

We first evaluate the interest of sparse KSVM. Then we describe our experiments
on graph kernels. All experiments are done in Matlab using KSVM code provided
by the authors, except for linear programming which is done using CPLEX. For
experiments in a multiclass setting, the 1vsAll setting is applied.

3.1 Evaluation of sparse KSVM

For this set of experiments, we use synthetic datasets (checkers and apple-
banana) to illustrate the impact of imposing sparseness. We use a tanh kernel
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without optimization on it, we just check it is really indefinite: the least eigen-
value is on average between -50 and -400 depending on the datasets. For each
problem shape (checkers and apple-banana), we generate 6 training sets, of 3
sizes (300 - 1000 - 2000), and 2 levels of overlapping (none or very low, and
high). Each configuration is generated and trained 10 times, and all test sets are
of size 10000. We monitored the accuracy, training and testing time, and the
solution size, for KSVM and sparse KSVM. For the sake of comparison, we also
added LP-SVM since it can be regarded as an alternative method for indefinite
kernels [2]. Figure 1 shows the average results over all the configurations. We
observe that in terms of accuracy, all methods are similar, with a small loss
of accuracy for sparse KSVM. Concerning the solution size (hence the testing
time), the gain of sparse KSVM over KSVM is obvious. LP-SVM is better from
that point of view, but the training time explodes. Overall, sparse KSVM seems
to be a good compromise, at least on those experiments.

Fig. 1: We compare KSVM, sparse KSVM and LP-SVM on various sets of synthetics
data, in terms of accuracy, solution size, training time and testing time. We observe
that sparse KSVM is a good compromise.

3.1.1 SHREC’09

In this part we compare graph kernels extracted from SHREC 2009 [4] dataset.
This dataset contains 200 shapes from 10 main classes (humans, teapots, planes,
birds, chairs, etc.). Each main class has 2 subclasses that are structuraly similar
(for instance chairs and tables). For the evaluation of class prediction, this is
taken into account by the attribution of 1 point if the shape is classified in its
highly relevant class and 0.5 in its marginally relevant class. The accuracy is
computed for the query set represented on fig.2a.
From each shape we extract 8 different graphs following the method proposed
in [7]. For each of the 8 sets of graphs, we compute 196 Kmax kernels and 196
Kmatching kernels, which correspond to various sets of parameters (kernels on
edges and vertices are Gaussians for which we vary σ from 10 to 107, and we also
vary the maximum path length from 1 to 4.). In total we obtain 1568 indefinite
kernels and as many SDP kernels. For each pair of kernels (Kmax and Kmatching

computed of the same set of graphs with the same hyper parameters), we train
a KSVM and a SVM (with a cross-validation on the C parameter). Figure 2b
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(a) The query set from SHREC’09
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(b) Classification accuracy

Fig. 2: This figure summarizes the classification accuracy on the query set, for each
computed kernel for Kmax and Kmatching. In the case of Kmax, the training is done
using KSVM and sparse KSVM (noted sKSVM). Each set of results is ordered by
classification accuracy on the query set. Kmax kernels outperform Kmatching kernels
and we also observe that the sparse KSVM is as good as KSVM alone.

reports results in term of classification accuracy. On average Kmax outperforms
Kmatching.

3.1.2 SHREC’08

From SHREC’08 [8], we extract only one set of graphs. We have 145 training
shapes from 12 classes, which makes it a difficult dataset for multiclass learning.
The validation set is made of 425 shapes, and we also have a query (test) set
of 76 shapes. Each shape belongs to one class so the accuracy is computed in a
classic way contrarely to the previous experiment. Figure 3a gives performances
for the validation set. Contrarely to the previous dataset, the task is much more
difficult, and we observe that Kmatching is by far outperformed by its indefinite
version Kmax.

4 Conclusion

In this paper we present an emprical study of the potential loss of information
implied by kernel positivation strategies. While not being exhaustive since it is
based on one type of graph kernel and two datasets, it outlines the fact that one
should not take for granted that semi-definite positive kernels are what we need.
Another message that can be assessed by this study is that is may be intersting
for kernel designers to define their kernels relaxing the positive definite constraint
now that adapted solvers are available.
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(a) Classification accuracy on validation set

Kmatching Kmax Kmax

SVM KSVM s-KSVM
52.63% 68.42% 65.79%

(b) Results on the query set

Fig. 3: Figure (a) summarizes the classification accuracy on the validation set, for
each computed kernel for Kmax and Kmatching. In the case of Kmax, the training
is done using KSVM and sparse KSVM (noted sKSVM). Each set of results is or-
dered by classification accuracy on the validation set. Kmax kernels clearly outperform
Kmatching kernels and we also observe that the sparse KSVM is almost as good as
KSVM alone. On table (b), we provide the test accuracy on the query set for the best
(from validation) kernel of each type.
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