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Abstract.
Interpretability is often a major concern in machine learning. Although
many authors agree with this statement, interpretability is often tackled
with intuitive arguments, distinct (yet related) terms and heuristic quan-
tifications. This short survey aims to clarify the concepts related to in-
terpretability and emphasises the distinction between interpreting models
and representations, as well as heuristic-based and user-based approaches.

1 Introduction

According to the literature, measuring the interpretability of machine learning
models is often necessary [1], despite the subjective nature of interpretability
making such measure difficult to define [2]. Several arguments have been made
to highlight the need to consider interpretability alongside accuracy. Some au-
thors note the importance to consider other metrics than accuracy when two
models exhibit a similar accuracy [3, 4]. Other authors point out the link be-
tween interpretability and the usability of models [5–7]. Often, the medical
domain is taken as example. To accept a predictive model, medical experts have
to understand the intelligence behind the diagnostic [8], in particular when the
decisions surprise them [9]. Furthermore, the detection by experts of anomalies
in the model is only possible with interpretable models [10]. Moreover, in some
countries, credit denial legally has to be supported by clear reasons, which means
that the model supporting this denial has to be interpretable [8]. Finally, it can
also be argued that the model itself is a source of knowledge [6, 11,12].

This survey addresses two issues in the machine learning literature. First,
many terms are associated to interpretability, sometimes implicitly referring to
different issues. Second, the literature, scattered because of the difficulty to mea-
sure interpretability, is neither united nor structured. Although interpretability
is often associated with the size of the model, Pazzani wrote in 2000 that "there
has been no study that shows that people find smaller models more comprehen-
sibible or that the size of a model is the only factor that affects its comprehen-
sibility" [4]. In 2011, the situation has not changed, according to Huysmans et.
al [12] who echo Freitas [11]. Therefore, this survey addresses the two above
issues by proposing an unifying and structured view of interpretability focused
on models and representations, and concludes by exposing gaps in the literature.

This survey tackles the questions "what is interpretability?" and "how to
measure it?". We do not review techniques to make models more interpretable,
because we consider the measure of interpretability as being anterior to this
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Figure 1: Structure of the main terms used in the literature. A→ B means that
the measure of B requires the measure of A. A←→ B means that measuring A
is equivalent to measuring B. Boxes highlight equivalence classes of problems.

problem. In order to answer "what is interpretability?", one needs to gather
and unify terms dealing with the problem of interpretability. Section 2 presents
several terms used to refer to "interpretability". The second question can be
rephrased in terms of comparisons. Sections 3 and 4 review interpretability based
on comparisons of models and representations, respectively. Section 5 concludes
by highlighting gaps in the literature and corresponding research questions.

2 Different Terms for Different Problems?

This section proposes a unified and structured view of the main terms related to
interpretability in the literature. To help researchers when reading papers with
distinct terms actually referring to the same problems, a two-level structure is
proposed in Fig. 1: the first level consists of synonyms of interpretability and
the second level contains terms that rely on interpretability to be measured.

Because of the subjective nature of interpretability, there is no consensus
around its definition, nor its measure. First of all, as noted by Rüping [2], the
interpretability of a model is not linked to the understandability of the learn-
ing process generating this model. Rather, interpretability can be associated to
three sub-problems: accuracy, understandability and efficiency [2]. Understand-
ability is central to the problem: an interpretable model is a model that can be
understood. Rüping adds accuracy as a necessary criterion in the evaluation of
interpretability because "it is always possible to generate a trivial, easily under-
standable hypothesis without any connection to the data" [2]. Finally, efficiency
concerns the time available to the user to grasp the model. Without this crite-
rion, it could be argued that any model could be understood given an infinite
amount of time. Other authors use the term interpretability as strict synonym
of understandability [5, 10] or comprehensibility [3, 6, 8, 13].

Feng and Michie [14], as other authors after them [15,16], add "mental fit" to
the terms interpretability and comprehensibility. Whereas "data fit" corresponds
to predictive accuracy [15], "mental fit" is linked to the ability for a human to
grasp and evaluate the model [14]. These authors often link interpretability to
explainability, e.g. in [15]. An explanatory model "relates attributes to out-
comes in a clear, informative, and meaningful way" [17]. According to Ustun
and Rudin, interpretability is intuitive for the expert and closely linked to trans-
parency, sparsity, and explanatory [17].

Some other terms are used in combination with interpretability, but actually
refer to other problems. Among them, we can consider usability, acceptability
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Figure 2: Taxonomy adapted from [20] augmented by representations. Inter-
pretability can be measured for both models and representations (shaded area).

and interestingness. Freitas provides an example where simplicity, often closely
linked to interpretability, does not correspond to acceptability for an expert
[9]. According to him, following the medical example of [18], experts can be
opposed to over-simplistic models. For instance, a three-node tree is probably
interpretable, but could be rejected by experts because of its over-simplistic
structure [9]. One should note that these two concepts, interpretability and
acceptability, are strongly linked but not synonyms, as an acceptable model
has to be interpretable, but not vice-versa. In the same way, a model can be
considered as not interesting, although being interpretable.

Finally, the term "justifiability" can also be observed alongside interpretabil-
ity, as it requires an expert to assess that the model "is in line with existing
domain knowledge" [8, 19]. As for usability and interestingness cited above,
justifiability depends on the interpretability of the model [8].

3 Comparing Models in Terms of Interpretability

Even if we agree on terms to discuss interpretability, one still needs an actual
measure of interpretability. In general, measures can be applied on many compo-
nents of learning systems. Lavesson and Davidsson propose a taxonomy for eval-
uation methods that classifies them according on whether they assess learning
algorithms, algorithm configurations (meta-parameters) or models [20]. Those
three elements can be either specific or general, like e.g. evaluation methods for
a specific type of model or for distinct types. Similarly, we believe that it is nec-
essary to make a clear distinction between interpretability measures depending
on what specific component they target. In this view, we extend the taxonomy
of Lavesson and Davidsson by also considering representations in Fig. 2 inspired
by [20]: measures of interpretability can be applied to either models or repre-
sentations through specific approaches. First, comparing mathematical entities
such as models requires to define quantitative measurements. This approach
is one of the two approaches highlighted by Freitas [9] and can be called the
heuristic approach [2]. The second approach uses user-based surveys to assess
the interpretability of models. However, unlike the first approach, the models are
evaluated through their representations. This second approach is closely linked
to information visualisation. This section considers interpretability of models
and Section 4 deals with interpretability of their representations.

The heuristic approach can compare models from the same type, e.g. two
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SVM models. The size of the model is one of the most used heuristic [2, 6]. For
instance, two decision rule lists/sets can be compared in terms of their number of
rules and terms [21,22] and two decision trees can be compared in terms of their
number of nodes [23]. Some authors base their heuristics on the psychological
theory of Miller, stating that human beings can only deal with 7 ± 2 abstract
entities at the same time [24]. For instance, Wheis and Sondhauss propose a
maximum of 7 in the number of dimensions [15]. Another way to evaluate the
complexity of models is the minimum description length (MDL) [20], but the
result depends on the coding scheme for the model parameters, also making this
technique specific to the model type [20].

Comparing models of distinct types is more challenging, as the characteristics
related to the interpretability of a model from a certain type can be missing in the
model from another type. For instance, one cannot minimise the number of nodes
of a SVM model. To overcome this difficulty, Backhaus and Seiffert propose to
consider three generic criteria: "the ability of the model to select features from
the input pattern, the ability to provide class-typical data points and information
about the decision boundary directly encoded in model parameters" [25]. For
instance, SVM models are graded 1 out of 3, because they only satisfy the third
criterion thanks to the "stored support vectors and kernel" [25]. SVM models
compete with other models ranked 1 out of 3, but are less interpretable than
others ranked 2 or 3 out of 3. Whereas this ranking is able to compare models
of distinct types, it does not allow to compare the interpretability of models
from the same type. Other limitations of heuristics exist, i.e. they deal with
"syntactical interpretability" and do not consider semantic interpretability [9].

4 Comparing Representations in Terms of Interpretability

The limitations depicted in Section 3 are overcome by a measure based on users
that evaluate models through their representations. Allahyari and Lavesson used
a survey filled by users to evaluate the interpretability of models generated by
6 learning algorithms [26]. This user-based study compared models pairwise
by asking questions like "is this model more understandable than the other
one?" [26]. Such surveys allow comparing models of the same type, but also
models of distinct types. Following the same idea, Piltaver et. al. designed
a survey [27] validated [13] on decision trees. Huysmans et. al. checked the
accuracy, answer time and answer confidence of users who were asked to grasp
a certain model through its representation [12]. Other questions evaluate the
understanding of the model. These authors compared the interpretability of
three different representations: trees, decision tables and textual representation
of rules. Thanks to this kind of evaluation, they could check the link between
interpretability and the simplicity of the model, and could conclude by asking
questions such as: "to what extent the representations discussed in this study
continue to remain useful once they exceed a certain size" [12]. This new trend
echoes Rüping when he wrote that "due to the informal nature of the concept of
interpretability, a survey over human expert is the most promising measure" [2].
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Evaluating representations before evaluating accuracy of models has a par-
ticular advantage. Following the idea of Wheis and Sondhauss [15], one could
first choose the type of representation having the highest interpretability for a
certain group of users, and only then select the type of model having the highest
accuracy among those that can be represented by the selected representation.

As a final remark, one could argue that, in the context of interpretabil-
ity, there is no such thing as a comparison of models, but only comparisons of
representations. One can go further and only compare visualisations of model
representations, since representations can be either uninterpretable or highly in-
terpretable depending on the way they are shown to the user. Yet, it should be
noted that the user-based approach (comparing representations and visualisa-
tions thereof) does not allow to quantify interpretability. In contrast, heuristics
can be integrated in learning through multi-objective optimisation techniques.

5 Conclusion

This paper presents two major difficulties in the measure of interpretability.
First, distinct terms are used in the literature. We separated them into the
ones used as strict synonyms (e.g. understandability and comprehensibility)
and the ones that depend on interpretability to be defined but related to distinct
problems (e.g. justifiability and usability). Second, papers in the literature can
be divided into comparisons of the interpretability of models and representations,
that is comparisons based on mathematical heuristics or user-based surveys.

In the literature, there is no clear-cut distinction between the interpretability
measure of models and representations. The two research questions "what is an
interpretable model?" and "what is an interpretable representation?" need to be
investigated independently. Furthermore, many papers rely on intuition in the
use of interpretability, which leads to a focus on "white-boxes" (decision trees,
decision rules, etc.) and a lack of consideration of "black-boxes" (SVM, neu-
ral networks, etc.). This distinction would benefit from a grey-scale approach.
Finally, there is a lack of literature around user-based measures of interpretabil-
ity, leaving the question "do heuristics accurately model the understanding of
users?" with almost no answer. There is a need to link the results of user-
based surveys with heuristics in order to translate the former into the latter and
hopefully optimise mathematically the interpretability described by users.
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