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Abstract.

This work presents the results of the characterization of lung nodules in
chest Computerized Tomography for benign/malignant classification. A
set of image features was used in the Computer-aided Diagnosis system to
distinguish benign from malignant nodules and, therefore, diagnose lung
cancer. A filter-based feature selection approach was used in order to
define an optimal subset with higher accuracy.

A large and heterogeneous set of 293 features was defined, including shape,
intensity and texture features. We used different KNN and SVM classifiers
to evaluate the features subsets. The estimated results were tested in a
dataset annotated by radiologists. Promising results were obtained with
an area under the Receiver Operating Characteristic curve (AUC value)
of 96.2 ± 0.5% using SVM.

1 Introduction
Nowadays, from all the pathologies, lung cancer is one of the most deadliest in
the world, specially in developed countries. As a reference, the total amount of
deaths of lung cancer in the United States is superior than the sum of colon,
breast and prostate cancers [1]. A relatively poor early diagnosis is the main
cause of dead, representing a crucial factor for the patient’s survival rate. This
happens because the diagnosis process is expensive and hard to obtain, as the
radiologists must perform a deep and exhaustive revision throughout the scans,
which implies a time consuming process and is often physically demanding [2][3].

The Computerized Tomography (CT) of the thorax is frequently used for
the diagnosis of lung diseases due to a good image quality. Computer-aided
Diagnosis (CAD) systems for lung nodules detection and characterization use
a set of techniques, as for example progressive thresholds until obtaining the
optimal nodule segmentation [4].

Once the lung nodule is segmented, an appropriate definition and char-
acterization is crucial in order to analyze and determine its malignancy and,
therefore, being able to proceed with lung cancer diagnosis. Thus, the features
would include texture, gradient, morphology-based or intensity image informa-
tion [4, 5, 6]. Then, feature selection can be useful to reduce the dimensionality
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of the feature space, avoiding redundant or irrelevant information. Finally, the
classification stage aims to distinguish malignant and benign nodules. As an
example, Yanjie et al. [6] employed genetic algorithms for feature selection and
Support Vector Machines (SVM) based classifiers in the classification stage.

The systems can be analyzed to assess the performance using different statis-
tics. One of the most used is the AUC value, which was employed in this work.
The best results in the state-of-the-art for benign/malignant nodule classifica-
tion were presented by Haifeng et al. [4] with an AUC value of 91% for diagnosed
nodules by either biopsy, follow-up or surgery.

In this work, we used the diagnosis made by radiologist and a large set of
heterogeneous features for lung nodule classification. A subset of features was
selected in order to identify the most relevant discriminant ones. Moreover,
different KNN and SVM classifiers were used to evaluate the potential of the
feature subsets.

2 Methodology
Generally, the process of diagnosis includes a set of 5 main steps: nodule seg-
mentation, feature measurement, feature selection, classification and validation.
As input, the method used segmented nodules provided by an approach that
was previously developed and described in [7].

2.1 Feature definition

In general terms, the main characteristics that the nodules present are related to
intensity, shape and internal characteristics. These properties present different
patterns that normally help the specialists to distinguish the benign from the
malignant nodules.

Having all this in mind, we defined a large and heterogeneous set of 293
features, presented in Table 1, as input to the classifiers to discriminate the
nodules regarding the malignancy. All these features can be categorized in the
following groups:

Morphological-based features Properties as volume, compact, ratios between
the eigenvalues or ratio of sphericity were defined to characterize appropri-
ately the nodules margins, their shape or volume, [5][8]. Generally, benign
nodules present a more compactness and smooth shape with respect to
malignant ones, with higher irregular morphologies. These features are
obtained from the 3D mask of the nodule.

Intensity features Different statistics over the entire intensity region as well
as over concentric spheres with different radiuses were implemented. These
properties basically measure the degree of calcification of the nodule where
higher calcification implies higher intensity values, many times associated
with benign nodules. The calcification is an important measure to differ-
entiate benign from malignant nodules. These features are obtained from
the segmented nodule after multiplying the 3D mask of the nodule with
the original image.
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Texture features Present high relevance as they indicate the internal charac-
teristics of the nodules (air, fat, cavitation, etc.) helping, therefore, the
benign/malignant differentiation. Gray-level intensity histogram (GLIH),
the Gray-Level Co-Occurrence Matrix (GLCM) [4][5], Gabor filters and
Laws’ texture energy measures were included in the feature set. These
features are obtained from the region of interest of the nodule.

Table 1: Measured features. (Gabor - the features are described as Si-Ow,
where S is the scale, i is the total number of scales, O is the orientation and w
is the total number of orientations. Other definitions: max - Maximum; min -
Minimum; std - Standard Deviation; r - Radius)

Features

Morphology
based

[1] - Volume
[2,3] - Compactness1; Compactness2
[4,5] - Ratio1; Ratio2
[6-9] - Eigen ratio(1, 2, 3, 4)
[10-12] - Sphericity ratio1; Sphericity ratio2; Sphericity ratio3

Intensity
[13-18] - Overall Intensity: Max; Min; Mean; Median; Std
[19-32] - Intensity Over Spheres (r = 1, 2, Eq Sphere Radius):
Max; Min; Mean; Median; Std

Texture

GLIH
[33-37] - Obliquity; Kurtosis; Energy; Entropy; Mean intensity (µ)
GLCM
[33-53] - Autocorrelation; Contrast; Correlation; Cluster Prominence;
Cluster Shade; Dissimilarity; Energy; Entropy; Homogeneity;
Maximum probability; Sum of squares; Variance; Sum average;
Sum variance; Sum entropy; Difference variance; Difference entropy;
Information measure of correlation1; Information measure of correlation2;
Inverse difference; Inverse difference normalized;
Inverse difference moment normalized
LAWS - Lattice Aperture Waveform Sets
[58-68] - mean LAWS 3×3; std LAWS 3×3 (5 convolution masks)
[59-85] - mean LAWS 5×5; std LAWS 5×5 (9 convolution masks)
Gabor
[86-166] - mean Gabor S5-O8; std Gabor S5 (5× 8 = 40 filters)
[167-293] - mean Gabor S8-O8; std Gabor S8 (8× 8 = 64 filters)

2.2 Feature selection and classification

Once the feature set is defined, we proceed with the feature selection process in
order to select those features that provided more information avoiding, therefore,
redundancies and facilitating the classification process. Feature selection was
performed by 10-fold cross validation using Correlation Feature Selection (CFS)
algorithm, that analyses the strength of a feature in predicting the class of
the object, but tends to give little importance to the inter-correlation of the
features, and Relief-F algorithm, that samples instances randomly and checks
the distance between them and the neighbours that have the same or different
classes. A weight function uses the distances to rank them [9][10].

Regarding the classifiers, three SVM classifiers with exponential Kernels,
where θ=[1,2,3] and three KNN with k=[13,15,17] were used. Classification
was performed by 10-fold cross-validation with 50 repetitions, using the AUC as
measure, and the mean and standard deviation of the AUC value were calculated.
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Table 2: Mean and standard deviation of 50 AUC % values, for 12 features
selected by 2 model searches and 6 classifiers.

AUC (%) 13-KNN 15-KNN 17-KNN 1-SVM 2-SVM 3-SVM
CFS 93.2 ± 0.8 93.5 ± 0.9 94.1 ± 0.7 96.2 ± 0.5 96.3 ± 0.6 96.4 ± 0.5

Relief-F 94.7 ± 0.7 94.4 ± 0.8 94.4 ± 0.7 96.0 ± 0.6 96.3 ± 0.6 96.2 ± 0.6

3 Results and Discussion
To test the methods, different 3D scans were taken from the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-IDRI) [11]. This
public image database consists of diagnostic and lung cancer screening thoracic
Computed Tomography scans with marked up, annotated lesions. These images
contain a variable number of slices that compose the 3D scan, each slice with a
resolution of 512× 512. In this work, only solid nodules that were annotated by
a consensus of 4 experienced radiologists are considered, resulting in a total of
179 malignant and 121 benign nodules.

Table 2 presents the values for each of the columns. The lowest value is
achieved using 13-KNN (KNN with k = 13). Looking at the SVMs results with
the CFS subset, there is no clear conclusion on which classifier is the best, though
the 3-SVM (SVM with θ = 3) is slightly better.

Feature selection indicated 12 features that obtained higher AUC values for
all the classifiers. The majority of features chosen by both methods were texture
features, though CFS also selected two shape features (Volume and Compact-
ness) and Relief-F three intensity (maximum intensity from an equivalent sphere,
centered in the nodule’s position with radius equal to 1, 2 and radius of the nod-
ule). The CFS selected four GLCM and four Laws features. The inclusion of
Volume and Compactness by CFS is coherent, as radiologists tend to consider
small and round nodules as benign and big or spiculated as malignant. The
lack of intensity features can give two indications, one is that CFS finds inten-
sity information similar for both malignant and benign nodules, and the other
is that the intensity features can be simply redundant to the problem if there
are already corresponding high correlated features in the set. Relief-F, however,
selected features that focus on the center calcification of the nodules, which are
also very used by radiologists in predicting the malignancy of the nodules. It
also includes a lot of GLCM features (8 in 12 features), implying that the GLCM
has a great discrimination capacity.

The AUC values for all classifiers and subsets for this dataset are high, though
there is no considerable difference between them. The reason behind this may
be due to the fact that radiologists tend to classify nodules considering only
morphological characteristics, as benign and malignant nodules generally have
specific shapes and sizes. For example, if the nodule is spiculated or big then
radiologists tend to classify the nodule as malignant. If it is small and round
then radiologists most likely think the nodule is benign.

Different examples of correct classification results are depicted in Figure 1.
It also represents the confidence as the amount of certainty that a classifier has
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Fig. 1: Examples of correct benign (1st column) and malignant (2nd column)
nodules classifications. Confidence is presented as the posterior probability of a
nodule belonging to a particular class (benign or malignant).

Fig. 2: Missclassification results of a benign (1st column) and a malignant (2nd

column). Confidence is presented as the posterior probability of a nodule be-
longing to a particular class (benign or malignant).

on labeling a nodule as benign or malignant. Most of the nodules were cor-
rectly classified, as those in Figure 1. However, there were some fails that are
illustrated in Figure 2, one benign nodule that was identified as malignant and
one malignant as benign. The confidence of the classifier presents valuable and
clear information of what happens in the system and visually confirms what was
stated previously. It is visible that round, small nodules are labeled as benign
with a high confidence and the same happens to big, spiculated/lobulated nod-
ules. In Figure 2, the incorrect malignant classifications (on the right) happen in
instances where one case has two or more nodules, possibly indicating a metas-
tasis situation, leading radiologists to assume the nodules are malignant. The
classifiers do not incorporate this information so they make a different diagnosis.
The incorrect benign classifications happen in nodules that are large, spiculated
or are located near or connected to other lung structures, leading to poor feature
measurement.

4 Conclusions
This work tries to evaluate and select the best performance of the characteristics
of pulmonary nodules in chest CT scans. As a result of this analysis, a large set
of features were defined over the nodules in order to discriminate the benign from
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the malignant nodules. Moreover, this set was analyzed and feature selection
was performed to select those ones that provided the best behaviour, by avoiding
the redundancies in the feature definition and optimize the classification process.
The posterior classification step achieved a performance with an AUC value
of 96.2 ± 0.5%, indicating that a CAD system can have similar classification
performance as a radiologist. However, further analysis and additional validation
is needed due to the small cases set that was employed. Future works will analyze
and employ more sophisticated image features to provide the classification stage
with more discriminative power. Moreover, wrapper based feature selection
methods should be tested, as better results can be achieved by guiding the
selection using classifiers.
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