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Abstract. In this paper, a data-driven modeling technique is proposed
for temperature forecasting. Due to the high dimensionality, LASSO is
used as feature selection approach. Considering spatio-temporal structure
of the weather dataset, first LASSO is applied in a spatial and temporal
scenario, independently. Next, a feature is included in the model if it is
selected by both. Finally, Least Squares Support Vector Machines (LS-
SVM) regression is used to learn the model. The experimental results show
that spatio-temporal LASSO improves the performance and is competitive
with the state-of-the-art methods. As a case study, the prediction of the
temperature in Brussels is considered.

1 Introduction

Reliable weather forecasting is one of the challenges in climate informatics. It
includes accurate predictions for many variables like temperature, wind speed,
humidity, and precipitation. State-of-the-art methods use Numerical Weather
Prediction which is a computationally intense method [1]. Recently, data-driven
models have been used in weather and climate science to have insight into the
embedded knowledge. There are different types of data-driven methods that
have been used for weather forecasting both in linear and nonlinear frameworks.
Two of the most popular methods are Artificial Neural Networks (ANN) and
Least Squares Support Vector Machines (LS-SVM). In [2], the authors claim
that LS-SVM generally outperforms artificial neural networks. Moreover, the
effectiveness of LS-SVM for temperature prediction is demonstrated in our pre-
vious works [3, 4].

Weather forecasting can be considered as a time-series problem. Therefore,
in order to have a reliable prediction for one specific day, not only the variables
of the day before, but also some previous days are included in the prediction
model [4]. Having several weather variables available for some locations and for
several days leads to a large feature vector size and hence feature selection be-
comes of great interest to decrease the complexity of the model. In our previous
work [4], a combination of k-Nearest Neighbor and Elastic net is used to reduce
the number of features.

Furthermore, historical weather data can be considered as spatio-temporal
data since they involve both place and time in the records [5]. In [6], Spatio-
temporal Relational Random Forest is proposed to predict severe weather phe-
nomena such as tornado and drought. The authors in [7] present a weather
forecasting model based on exploring the joint influence of weather elements
with considering spatio-temporal structure of the data.
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In this paper, a feature selection method is proposed by taking spatio-
temporal properties of the dataset into account. The main method for feature
selection is LASSO [8] which is a well-known approach and is a penalized least
squares method imposing an L1-penalty on the regression coefficients. It is ap-
plied on the spatial and temporal parts of the dataset independently and the
relevant features are selected based on the selected variables shared in both
models. Finally, in order to model the data, Least Squares Support Vector Ma-
chines (LS-SVM) [9], which use a set of linear equations to solve the optimization
problem, is used.

2 Background

In this section, LASSO and LS-SVM are explained. The former is used to
to decrease the number of the features in the model and the latter is used as
regression method.

2.1 LASSO

Due to the high dimensionality of the dataset, the feature selection is an impor-
tant step in obtaining the relevant features. In this study, LASSO [8] is used
as a feature selection approach. Let x be the feature vector and x(i) be the ith
feature. Consider the following linear regression model:

ŷ = β̂0 + β̂1x(1) + . . .+ β̂dx(d) . (1)

Several methods have been proposed for model fitting which lead to an estima-
tion of β values. One of the popular ones is LASSO which is a regularization
method that penalizes least squares imposing an L1-penalty on the regression
coefficients. Assume that there is a dataset with N observations and d variables.
Let y = [y1, y2, . . . , yN ]T and X = [x1, x2, . . . , xN ] ∈ R

d×N where xj is a vector
including d features and yj is the response value at observation j. LASSO solves

β̂ = argmin
β

||y −XTβ||2 + λ

d
∑

j=1

|βj |. (2)

Because of the L1-penalization, many of the coefficients shrink to zero and as
a result a sparse model is produced. Note that in (2) λ is a positive tuning
parameter.

2.2 Least Squares Support Vector Machines

Least Squares Support Vector Machines (LS-SVMs) [9], are used as a regression
method and results in solving a set of linear equations. Let x ∈ R

d, y ∈ R and
ϕ : Rd → R

h where ϕ(·) is a mapping function to a high or infinite dimensional
space (feature map). The model in primal space is formulated as:

ŷ = wTϕ(x) + b (3)

where b ∈ R and the dimension of w depends on the feature map and is equal
to h. Let {xj , yj}

N
j=1 be the given training set, γ be the positive regularization

612

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



parameter and ej be the error between the actual and predicted output for
sample j equal to ej = yj − ŷj . The primal problem is given by [9]

min
w,b,e

1

2
wTw +

γ

2

N
∑

j=1

e2j , subject to yj = wTϕ(xj) + b+ ej , j = 1, ..., N. (4)

It is obvious that if w is infinite dimensional, this optimization can not be solved
in primal space; thus, the problem is solved in dual space. Assuming αj ∈
R are the Lagrange multipliers, from the Lagrangian L(w, b, e;α) = 1

2w
Tw +

γ
2

∑N

j=1 e
2
j −

∑N

j=1 αj(w
Tϕ(xj) + b+ ej − yj), the LS-SVM model as a function

estimator is obtained as follows

ŷ =
N
∑

j=1

αjK(x, xj) + b (5)

where K(xj , xl) = ϕ(xj)
Tϕ(xl) for j, l = 1, 2, . . . , N based on Mercer’s theo-

rem [10]. In this paper, the Radial Basis Function (RBF), in which K(xi, xj) =
exp(−||xi−xj ||

2
2/σ

2), is used as a kernel function. In this case, the regularization
parameter γ and the kernel parameter σ are tuning parameters.

3 Spatio-Temporal LASSO

In data-driven weather prediction the features are historical weather variables.
Looking into weather forecasting as time-series problem, the weather can be
forecasted by a Nonlinear AutoRegressive eXogenous (NARX) model taking into
account some historical data of different weather stations. It is obvious that
each variable is recorded in the specific time and place and as a result weather
data sets have spatio-temporal structure. In addition, having several weather
elements for each day in a NARX model causes a high dimensional feature vector
and feature selection is needed to find the relevant features. In our previous
work [4], LASSO and Elastic net were used to reduce the number of features.
In this paper, LASSO is utilized as feature selection method, while the spatio-
temporal structure of data is taken into consideration.

Let y(t) be the target value at time t and Xq(t) ∈ R
d×N is a vector including

all of the features at time t for the qth city. Assume Xspatial(q) = [Xq(t −

1);Xq(t − 2); . . . ;Xq(t − lag)] ∈ R
d′
×N and Xtemporal(p) = [X1(t − p);X2(t −

p); . . . ;XQ(t − p)] ∈ R
d′′

×N where q ∈ {1, 2, . . . , Q} and p ∈ {1, ..., Lag} where
d′ = d×Lag and d′′ = d×Q and d is the number of measured weather elements
in one day. Note that Q is the total number of cities and Lag is the number of
previous days in the historical data used in the forecasting task.

In other words, each observation inXspatial(q) includes the historical weather
elements for 1 to p previous days of the city q and Xtemporal(p) includes the
historical weather elements for the p-th previous day for all Q cities. Conse-
quently, for each city, there is a Xspatial(q) and for each previous days there is
a Xtemporal(p). Therefore, it can be concluded that historical weather elements
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are included in both Xspatial and Xtemporal. For example, the real measurements
of 7 days ago in city 1 are present both in Xspatial(1) and Xtemporal(7).

After creating Xspatial and Xtemporal for different cities and Lags, LASSO is
used to reduce the number of features both in the spatial and temporal direction,
independently. In (6) and (7) and (6), the optimization problem in the spatial
and temporal scenarios are shown respectively:

β̂(q) = argmin
β(q)

||y −Xspatial(q)
Tβ(q)||

2 + λ

d′

∑

j=1

|β(q)j |, q ∈ {1, 2, ..., Q}, (6)

β̂(p) = argmin
β(p)

||y −Xtemporal(p)
Tβ(p)||

2 + λ

d′′

∑

j=1

|β(p)j |, p ∈ {1, 2, ..., Lag}. (7)

It is obvious that the total number of linear models created by LASSO is Lag+Q

and β̂(q) ∈ R
d′

and β̂(p) ∈ R
d′′

.
For feature selection using LASSO, the variables with non-zero coefficients are

considered to be relevant and are selected. In the proposed method, a feature is
selected only if it is considered relevant both in the spatial and temporal parts.
Thus, the particular feature in p days ago in city q is a relevant one if both
coefficients in β̂(p) and β̂(q) are non-zero.

After finding important features, the feature vector includes all of the selected
variables for Q cities and in Lag previous days. Afterwards, a LS-SVM model
in trained as function estimator and used for forecasting.

4 Experiments

In this study, data are collected from the weather underground website which
is one of the popular ones in weather forecasting. The data include real mea-
surements for weather elements such as minimum and maximum temperature,
dew point, precipitation, humidity and wind speed from the beginning of 2007
until mid 2014 and for 10 cities including Brussels, Liege, Antwerp, Amsterdam,
Eindhoven, Dortmund, London, Frankfurt, Groningen and Dublin.

As in our previous work[4], in order to evaluate the performance of the pro-
posed method, the experiments are conducted on two different test sets: one
from mid-November 2013 until mid-December 2013 (testset1) and the other one
from mid-April 2014 to mid-May 2014 (testset2). The prediction is done on daily
basis and for each test set, the training data includes daily weather variables of
all of the 10 cities from the beginning of 2007 until the previous day of the test
set. Thus, the total number of samples in training set is about 2500. Also, the
number of measured weather elements for each day is equal to 18.

To have a good generalization performance, all of the parameters are tuned
using 10-fold crossvalidation. “tunelssvm” function in the LS-SVMlab1.8 is used
for tuning γ and σ, the “lasso” function of MATLAB is used for tuning λ. Also,
considering the problem as time-series one, the Lag variable is tuned by grid
search in the range of 7 to 16. The performance is evaluated based on Mean
Absolute Error (MAE) of the predictions.
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In Figure 1 the performance of weather underground predictions for the min-
imum and maximum temperature in Brussels for both test sets together, is com-
pared with LS-SVM without feature selection and the cases that LASSO and
spatio-temporal LASSO are applied. As it is shown, the performance of the pro-
posed method for the minimum and maximum temperature prediction mostly
outperforms the cases where there is no feature selection or LASSO is applied
while ignoring the spatio-temporal structure of data.
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Fig. 1: MAE of the predictions in weather underground, LS-SVM, LASSO+LS-
SVM and ST-LASSO+LS-SVM

Data
set

Days
ahead

Temp. WU LS-SVM LASSO +
LS-SVM

STLASSO
+ LS-SVM

Testset1
1

Min 1.57 1.49±0.005 1.51±0.001 1.33±0.009
Max 0.96 1.23±0.003 1.39±0.005 1.16±0.005

2
Min 1.57 1.61±0.001 1.87±0.02 1.75±0.005
Max 1.15 1.39±0.005 1.49±0.01 1.37±0.01

3
Min 1.76 1.66±0.005 1.91±0.05 1.82±0.02
Max 1.26 1.50±0.001 1.79±0.01 1.81±0.02

Testset2
1

Min 2.59 1.38±0.005 1.46±0.005 1.33±0.01
Max 1.07 2.21±0.004 2.21±0.003 2.11±0.005

2
Min 2.37 2.01±0.004 1.98±0.02 1.85±0.01
Max 0.88 2.25±0.005 2.31±0.05 2.25±0.01

3
Min 2.40 2.02±0.002 2.09±0.03 2.01±0.02
Max 1.51 2.40±0.005 2.51±0.05 2.44±0.05

Table 1: MAE and its variance of the predictions in weather underground (WU),
LS-SVM, LASSO+LS-SVM and ST-LASSO+LS-SVM in testset1 (Nov/Dec)
and testset2 (Apr/May).

The average MAE of the methods on each testset for 5 iteration can be found
in Table 1. It can be observed that for the minimum temperature, the data-
driven approaches mostly outperform weather underground company. Among
the data-driven methods, the proposed method mostly has a better performance.
This means that with the help of the spatio-temporal structure, better features
are selected. In the experiments, it was observed that while preserving the
sparsity, the average number of features selected by the proposed method is
larger than the number of features selected by LASSO.
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5 Conclusion

In this paper, a spatio-temporal LASSO feature selection for weather predic-
tion was proposed. It mostly outperforms LASSO by incorporating the spatio-
temporal structure of the data. The performance is analyzed by minimum and
maximum temperature forecasting in Brussels in two different time periods for
1 to 3 days ahead.
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