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Abstract. We propose a two-step neural approach for face Super-Resolution (SR)
to improve face recognition performance. It consists in first performing generic SR
on the entire image, based on Convolutional Neural Networks, followed by a spe-
cific local SR step for each facial component, using neural autoencoders. Obtained
results on the LFW dataset for a ×4 upscaling factor demonstrate that the method
improves both image reconstruction (+2.80 dB in PSNR) and recognition perfor-
mance (+3.94 points in mean accuracy), compared with ×4 bicubic interpolation.

1 Introduction

Super-Resolution (SR) aims to produce high-resolution (HR) images from one or sev-
eral low-resolution (LR) ones. We can distinguish specific SR methods which expect a
particular type of input images from generic ones which do not make any assumption
on the input.

Face SR, also known as Face Hallucination, refers to specific methods which per-
form SR on facial images. One of the main applications of face SR methods address
recognition systems. Indeed, performance of face recognition algorithms is very de-
pendent on image resolution, and drastically decreases with LR images. The face SR
research topic is roughly composed of two main classes of methods. The first class
consists in designing low and high resolution spaces where face SR can be performed
more efficiently. Instead of working in the pixel domain, these approaches first project
images into the designed spaces that incorporate a strong prior on face images, being
most of the time aligned. These methods are generally used as a pre-processing step
leading to a medium-resolution image which is then improved by a generic step [1, 2].
The other class of methods incorporates the face prior differently, in that they do not
have a global face approach, but rather make use of facial component detection to fo-
cus on these specific parts [3, 4]. Matching this second class, the goal of the proposed
method is to produce ×4 SR images yielding the closest recognition scores to the ones
obtained by HR.

The rest of this article is organized as follows: our two-step approach is presented
in section 2. Then, the obtained results are described in section 3. Finally, we give a
conclusion and perspectives in section 4.

2 A two-step neural approach for face Super-Resolution

This section describes the proposed approach (see Fig. 1). In the first step, a high-
resolution image is generated using a generic SR approach. During the second step,
localized SR is performed on facial components.
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Fig. 1: The proposed two-step neural approach for face SR.

2.1 Generic SR using Convolutional Neural Networks

The first step of the proposed method aims to resample the initial LR image on a denser
grid. Instead of using a simple interpolation scheme, we propose to take profit of the
recent advances in Single Image SR (SISR). Learning based methods have shown good
performance in accomplishing this task (such as neural models described in [5, 6]).
These approaches take advantage of large sets of training examples, consisting most
of the time in pairs of low and high resolution patches. During the learning process,
they incorporate specific priors on both the LR-HR relationship and the nature of the
images. Generally, natural images are used to train SR learning-based systems in order
to fit general purpose application. However, if the systems are trained on specific image
data, it can specialize on this kind of images and therefore boost the performance of
further processing tasks (e.g. text recognition in [7]).

We train a generic Convolutional Neural Network (CNN) to perform the described
SISR task, using a configuration similar to [6] adapted to the desired ×4 scale factor.
The network consists in several convolutional layers followed by neuron ones, and an
output layer performing upsampling, as illustrated in Fig. 2. Non-linear activation func-
tions (tanh) are applied to the output of each layer, except the last one which is linear
to avoid saturation during the learning process.

The CNN weights are learned with standard backpropagation and mean squared
error loss function, taking as input 2D LR patches and targeting pixel-wise difference
between HR and bicubic patches (see Fig. 2). The latter corresponds to lost visual in-
formation and aim to compensate for artefacts such as blur or jagged edges. The variety
of these artefacts, especially for high upscaling factors, makes the problem difficult and
highly non-linear.

The 2D patches are extracted from face images taken in the wild, which are very
close to natural images as they contain faces in various positions and a surrounding
environment. We blindly sampled the low and high resolution pairs of patches without
any knowledge on the location of the face. Therefore, the CNN is generic and mainly
learns to remove natural interpolation artefacts, via a global optimisation over all exam-
ple pairs.

However, face recognition involves a priori knowledge on the face structure and
components (e.g. eyes, nose and mouth). As the present CNN is blind to these details,
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Fig. 2: CNN Architecture for the Generic SR step. We set N1 = 20, N2 = 230, N3 = 64 after
testing different configurations, and s = 4 for the experiments. Note that the input image is still
sampled on the LR grid, while the output map is sampled on the HR grid using s× s linear output
neurons, yielding a s2 times larger image.

both by the variety of samples in the training set and the limited size of the input retina,
a second step is proposed to specialize on the face components.

2.2 Localized SR using autoencoders

Whereas the first step is dealing with the entire image, the second one is focusing on
crucial locations in terms of facial recognition. Indeed, eyes, mouth and nose regions
are essential components for recognition. They cannot be blindly sampled in face im-
ages, especially taken in the wild, as they appear in specific locations. Therefore, we
propose to exploit a detection algorithm (such as [8]) that would extract facial com-
ponents from the output given by the first step and learn for each of them a specific
model.

Once each of these components are extracted from the whole dataset, we may build
a more compact representation via dictionary learning. These methods have been used
in many ways to perform SR. They are generally patch-based and produce outputs as a
weighted combination of atoms. In [2], coupled over-complete dictionaries are learned
such that the HR and LR version of a same patch can be both represented by the same
sparse code. In [9], several dictionaries are learned to perform both SR and expression
normalization. While based on neural autoencoders, as can be seen on Fig. 3, our
second step is inspired by those techniques.

For each facial component, a convolutional encoder projects the input patch into a
ND-dimensional hidden subspace, and the output patch is reconstructed from the ob-
tained code through a fully connected one-layer decoder with linear activation. The
output patch can then be written as a weighted linear combination of ND atoms ck:

o =
ND

∑
k=1

wk · ck where o is the reconstructed output facial component, wk are the compo-

nents of the code in the hidden subspace, and ck are the weights of the decoder layer
associated to the kth code component. Each atom is directly associated to one direction
of the hidden subspace. In order to learn a meaningful representation, we add a sig-
moid activation on the encoder output to make the code positive, and a non-negativity
constraint on the decoder weights. As can be seen on Fig. 3, this constraint makes
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Fig. 3: Localized models for facial components. Left and right eyes, noses and mouths are
extracted, and processed by distinct autoencoders. For eyes and nose patches: sx × sy = 36×36.
For mouth patches: sx × sy = 48× 24. Results of section 3 are given with N1 = 8, N2 = 64,
ND = 128.

atoms ck become part-based and less noisy, just as in the case of non-negative matrix
factorization [10].

In sum, our method first applies a generic SR model to the whole image. Then,
the first step output is modified through localized models which project extracted facial
components into hidden subspaces and reconstruct from these projections HR facial
components as additive combinations of learned atoms.

3 Experimental results

3.1 Data and set-up

Experiments were carried out on the Labeled Faces in the Wild (LFW) dataset [11],
widely used to evaluate facial recognition algorithms. Faces are present under different
expressions, poses, expositions, illuminations and are sometimes partially occulted. We
generate the LR images by blurring the original ones with a gaussian kernel of standard
deviation σ = 1.6 and linearly downsampling them by a factor of 4. From the generated
LR and HR image pairs, we randomly extract patches and train the first step CNN.
Then, for the second step, we automatically extract facial components from the generic
SR and HR images with an algorithm based on facial landmark detection [8].

To benchmark the proposed approach, we use a face recognition system inspired
by the simile classifier described in [12]. Note that the performance of this recognition
engine is not competitive with current state of the art approaches. However, our goal is
to evaluate the benefit of the proposed SR algorithm in terms of face recognition, which
can be outlined with any reasonably performing method.

3.2 Evaluation

Although improving recognition performance is the main goal of this work, we first
propose to evaluate our method from a reconstruction and visual point of view, as it is
usually done to evaluate SR methods.

Fig. 4 shows the LR, bicubic and HR version of one LFW test image as well as the
outputs after each step of our method. Visually, SR images look sharper than the bicu-
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Fig. 4: Obtained results. a.: Left to right: LR, bicubic (PSNR = 28.84 dB), generic step only
(PSNR = 32.28 dB), our method (PSNR = 31.64 dB), HR. b. to e.: Compelling test examples of
left eye, right eye, nose and mouth for generic step only, our method, and HR.

bic ones. This visual impression is reflected in the PSNR measurements (see Fig. 4).
Indeed, mean PSNRs obtained on the whole LFW testset indicate that SR ouputs are
closer to HR images than the bicubic ones. Nevertheless, it should be noticed that the
highest PSNR is obtained on the first generic step outputs: facial component models
make the PSNR decrease. This diminution can be explained by the fact that positivity
constraints added on the code and decoder weights make the reconstruction goal harder
to fulfil: second step outputs have to be produced by adding a limited number of positive
atoms. As a consequence, facial components given by localized models tend to differ
from HR targets and make the PSNR drop. However, even if slightly different from the
target, facial components given by localized models contain less visual artefacts which
were still present after the first step. This could be mainly explained by the fact that
second step outputs are reconstructed combining clean part-based atoms.

Accuracy
improvement

Bicubic +4.21

Generic SR +6.91

Our method +8.15

HR +11.85

Table 1: Obtained results in terms of
recognition improvement, w.r.t. LR
mean accuracy (74.70%).

Fig. 5: ROC curves showing face recognition perfor-
mance on the LFW dataset under different resolutions.
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At the end, as long as processing the facial components of the first step by our
localized models improves recognition performance, the PSNR decrease is a negligible
counterpart. This is confirmed by the results reported in Tab. 1: if the generic step
has already permitted to gain +2.70 points over the bicubic mean accuracy, localized
models improve this score by additional +1.24 points. ROC curves of Fig. 5 show that
the best performance is obtained when images are treated by our two-step method.

4 Conclusion and perspectives

In this article, we proposed a two-step super-resolution approach using two different
neural architectures, that allows to produce a high-resolution face image from a low-
resolution one without constraints on the pose, the illumination or the face alignment.
Results on LFW dataset showed that recognition system performance benefits from both
a higher resolution and reduced artefacts on facial components.

Still, the method is limited in some aspects. We could take profit from larger
datasets and learn more complex neural networks. As far as the second step is con-
cerned, a more complex encoder and the learning of an overcomplete dictionary could
have led to better reconstruction performance. Finally, the proposed approach is highly
dependent on the facial components detector. An interesting challenge would be to
absorb the proposed steps into an end-to-end framework.
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