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Abstract. Selecting differentially expressed genes with respect to some
phenotype of interest is a difficult task, especially in the presence of con-
founding factors. We propose to use a spatiotemporal independent com-
ponent analysis to model those factors, and to combine information from
different spatiotemporal parameter values to improve the set of selected
genes. We show on real datasets that the proposed method allows to
significantly increase the proportion of genes related to the phenotype of
interest in the final selection.

1 Introduction

We address the problem of selecting genes differentially expressed with some phe-
notype of interest in large genomic datasets. The approach presented here uses
matrix factorization to model the different sources of variations, including both
biological and confounding sources of variation. The latter are known as batch

effects and occur in large-scale genomic datasets that aggregate measurements
obtained under different technical conditions such as reagent quality, laboratory
temperature, or chip. Batch effect removal is particularly challenging due to
the many possible sources of variation that are unknown or only partly known
through limited information, such as batch number and processing date. Includ-
ing those confounding factors in the modelling is however of critical importance,
as not doing so may adversely affect the validity of biological conclusions drawn
from the datasets [1, 2, 3, 4].

The genomic data we focus on here are gene expression data, which are now
more and more used to explore biological questions such as detecting differen-
tially expressed genes, or predicting sample class. Each database thus takes the
form of a p-by-n feature-by-sample matrix X , where p (the number of genes) is
typically around 20 000 and n (the number of individuals in the dataset) a few
hundred.

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Sys-
tems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme
initiated by the Belgian Science Policy Office.

301

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



A popular approach to model batch effects, as well as other technical and
biological artefacts, is to use independent component analysis (ICA) [5, 3]. Ap-
plying ICA methods to a feature-by-sample matrix X yields a decomposition

X ≈ ABT =

K
∑

k=1

A:,k (B:,k)
T

(1)

where A:,k (the kth column of A) can be interpreted as the gene activation
pattern of component k and B:,k as the weights of this pattern in the samples.

When computing this decomposition, the question arises whether one should
minimize the mutual information between the columns of A or those of B.
In [6, 4], a continuum between the “A” and “B” options was investigated using a
“spatiotemporal” ICA method based on joint diagonalization of cumulant matri-
ces. The method was validated in [6] by assessing if known potential confounding
sources were correlating with B:,k components. Depending on the dataset and
on the confounding factors, a better recovering of those factors could be attained
by modifying the spatiotemporal trade-off α.

The question is then: if there is no optimal value of α, can we aggregate infor-
mation from different α values? Moreover, an important aspect in such methods
is stability: a good algorithm should give similar results in similar conditions.
In this work, building on [6] and [4], we study how combining information from
different α values may help to improve the list of selected genes.

The paper is organized as follows. Section 2 presents the different steps of
the method used, which is validated in Section 3, and conclusions are drawn in
Section 4.

2 Selection of differentially activated genes

Combining ideas from [6] and [4], we now present the method that we use to
select differentially expressed genes. As in [4], the underlying model assumes
that the expression level of a gene is the result of interactions between different
phenomena, biological or physical, where one in particular is of interest (the
phenotype of interest, or POI) and the others are not. We cannot know exactly
all those phenomena, but we can have an idea of the behavior of some of them
by means of available external information (confounding factors, or CF) such as
chip type and reagent quality. Under the assumption that those interactions are
linear, the model can be written as:

Xg,:
︸︷︷︸

activation
levels

of gene g

= fg( y
T

︸︷︷︸

phenotype

of interest

) +

K
∑

k=1

Agkhk( r
T
k

︸︷︷︸

confounding

factors

) + ǫg,
︸︷︷︸

noise

g = 1, ..., p.

The f(x) notation, used throughout this paper, stands for a linear prediction
model based on the knowledge of variables x. Since we do not know exactly the
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impacts hk(r
T
k ) of the confounding phenomena, we try instead to find a basis

of surrogate variables vk that spans the same space, with possible insights from
CFs:

Xg,: = fg(y
T ) +

K
∑

k=1

Agk v
T
k

︸︷︷︸

surrogates

variables

+ ǫ.

Under the assumption of linear interactions, variables vk can be inferred
from X and y by means of a matrix factorization which is done here using the
spatiotemporal ICA developed in [6]. The interest is that, as shown in [4], vary-
ing the spatiotemoral tradeoff represented by the parameter α can potentially
improve the modeling of confounding factors.

Once the surrogate variables are built from X in an unsupervised way, we
can check if they do not correlate too much with the phenotype of interest. If
the p-value of association between a surrogate variable and the POI is below
some threshold (typically under 0.05), and if the surrogate variable is not more
strongly associated with a confounding factor, then this surrogate variable is
discarded.

The final objective is to find a subset of genes differentially expressed with
the POI. If gene g is differentially expressed with the POI y, then a good
model of its behavior has to include y in the variables. That is we must

have that X̂
(1)
g,: = f(y, v1, ..., vK) gives a better approximation of Xg,: than

X̂
(2)
g,: = f(v1, ..., vK). The significance of the difference between both predictions

is evaluated by computing associated p-values. As many genes implies many
statistical tests, the p-values are corrected in the corresponding q-values [7].

In this paper, to improve the stability of the list of selected genes, we compare
all sets of selected genes obtained for different values of the tradeoff parameter
α. We retain as final selection the genes present in most of those lists.

3 Validation

To validate our approach, we tested it on breast cancer expression. We com-
bined different datasets which can be accessed under GEO numbers GSE2034
[8], GSE5327 [9], GSE7390 [10], GSE2990 [11], GSE3494 [12], GSE6532 [13] and
from [14, 15].1 As in [3], we took histological grade as the phenotype of inter-
est, and oestrogen receptor status and tumor size as potential confounders. We
removed all samples with missing information about grade, oestrogen receptor
status or tumor size; which gives a combined dataset of 1473 samples for 22 282
genes.

To evaluate the final output, that is the list of selected genes, we compared
it with lists of genes known to be differentially activated with the POI (or CF)
using a hypergeometric test. If we know the total number of genes N and

1We used the dataset from the breastCancerNKI R package, available on
http://bioconductor.org/packages/breastCancerNKI/
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Fig. 1: Selection of POI-related and other genes, depending on α (showing only
genes selected at least once). A grey tile indicates that the gene was selected for
the corresponding α value. The light blue curve shows the number of selections
of each gene (in %). The dark blue curve shows the number of genes selected
for each α value.

among them the total number of POI-related genes K, the hypergeometric test
computes the probability that we observe k or more POI-related selected genes
if we select n genes at random.

Figure 1 shows the list of genes with a q-value under 0.001 for 21 equispaced
values of the spatiotemporal parameter α between α = 0 (mutual information
minimized solely on the first factor A in Equation 1) and α = 1 (solely on the
second factor B). The main observation is that the list of selected genes differs
from one α value to another, but with significant overlaps. Moreover, this overlap
is proportionally bigger for POI-related genes than for others genes: ∼ 43% of
all POI-related genes are selected in 85% of cases, against ∼ 14% for other genes.
If we compare the number of genes selected in 85% of cases to the median over α
of the number of genes selected (dark blue line), the proportions are respectively
about 72% and 32% for POI-related and other genes. So returning the most
stable genes across α values clearly improves the gene selection: the number
of POI-related selected genes is reduced, but the number of non POI-related
selected genes decreases much more. The proportion of selected genes that are
POI-related nearly doubles with this method, which we term aggr1.

Figure 2 shows a comparison of the proposed aggr1 method with three other
methods:
(i) ISVA, the method proposed in [4], which returns the list obtained with α = 0;
(ii) LR, where the gene selection is based on a linear regression with the POI only;
(iii) LR+CF, where the gene selection is based on a linear regression with the POI
and the CFs.
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Fig. 2: Number of genes selected, proportions of POI or CF-related genes and
associated p-values depending on the selection threshold.

For a same q-value threshold, the methods select different numbers of genes.
Unsurprisingly, aggr1 selects among the lowest number of genes. All methods
select similar proportions of CF-related genes for q-values thresholds larger than
0.001. However, due to the high number of selected genes for LR, this proportion
implies a much smaller p-value. Clearly, adding CF information in the model
will improve the POI/CF distinction as can be seen when comparing p-values of
the different models. We can see that for thresholds between 0.001 and 0.3, the
proportion of POI-related genes among the selected genes is between 100% and
40% higher for our method compared to the others. This higher proportion is
translated in a smaller associated p-value.
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4 Conclusion

Building on the approach of [4] and the spatiotemporal ICA proposed in [6], we
proposed to keep only the intersection of lists obtained from different values of
the spatiotemporal parameter α to improve the set of selected genes. We tested
our method on a large dataset of breast cancer expressions and showed that
the proportion of genes selected for all α values is bigger for POI-related values
than for other genes. It can then be used to decrease the proportion of non-POI
related selected genes.
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