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Abstract. As nonnegative matrix factorization (NMF) represents a non-
convex problem, the quality of its solution will depend on the initialization
of the factor matrices. This study proposes the Successive Projection Al-
gorithm (SPA) as a feasible NMF initialization method. SPA is applied to
a multi-parametric MRI dataset for automated NMF brain tumor segmen-
tation. SPA provides fast and reproducible estimates of the tissue sources,
and segmentation quality is found to be similar compared to repetitive
random initialization.

1 Introduction

Non-negative matrix factorization (NMF) has become a popular tool for multi-
variate data analysis in a wide range of applications, such as image analysis, text
mining, audio processing, computer vision, and so on. NMF provides a low-rank
(rank r) approximation of a nonnegative input matrix X :

X ≈WH with X ∈ Rm×n
+ ,W ∈ Rm×r

+ and H ∈ Rr×n
+ (1)

Factor matrices W and H are found by solving the following non-linear opti-
mization problem:

min
W,H

f(W,H) =
1

2
‖X −WH‖2F such that W ≥ 0, H ≥ 0 (2)

The columns of W correspond to the basic components, or sources, present in
the input data. Each row of H contains the weights, or abundances, for one par-
ticular source. NMF has the advantage of retaining the nonnegative structure
and providing interpretable factor matrices.
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Since NMF is a non-convex optimization problem, the NMF result will depend on
the initialization of the factor matrices, W0 and H0. Random initialization is by
far the most commonly used method, although it does not deliver reproducible
results and there is no guarantee of a qualitative solution. More advanced initial-
ization strategies have been suggested. Some methods rely on a random selection
of columns of the input matrix [1]. These methods have a low computational
cost, but don’t provide reproducible results. SVD-based initialization methods
suffer from the orthogonality constraint imposed on the singular vectors, result-
ing in negative values. Some straightforward ways of dealing with these negative
values have been proposed, such as setting them to zero or replacing them by a
mean value from the input matrix [2]. Clustering-based initialization methods
often require some initialization themselves, and they can become computation-
ally expensive [3, 4]. In this study, NMF is applied to a set of multi-parametric
Magnetic Resonance Imaging (MRI) data for automated image segmentation of
brain tumors. We introduce the Successive Projection Algorithm (SPA) [5] as
an initialization strategy for NMF. SPA results will be compared to repetitive
random initialization, i.e. running NMF with random initialization a sufficient
number of times, such that the comparison is unambiguous.

2 Materials and methods

2.1 MRI acquisition and pre-processing

21 high-grade glioma patients underwent a multi-parametric MRI acquisition
protocol on a 3T Siemens Trio Tim scanner (Erlangen, Germany). The lo-
cal ethics committee allowed a retrospective analysis of the data. The acquisi-
tion protocol consisted of conventional MRI, perfusion-weighted MRI, diffusion-
weighted MRI and MR spectroscopic imaging. A description of the acquisition
protocol and the obtained MRI parameters can be found in the Appendix. All
imaging modalities were coregistered and brought to the same spatial resolution
of 1× 1× 3mm3, for voxel-wise NMF analysis. Only voxels within the spectro-
scopic volume of interest were included. 12 MRI features were obtained from
the acquired data after pre-processing. In addition, 3 × 3 and 5 × 5 smoothing
windows were applied to the 6 non-spectroscopic image sets, and these averaged
features were also added to the feature set to improve robustness of the segmen-
tation [6]. We expect to find tissue-specific signatures on the columns of W, and
the abundances per tissue type on the corresponding rows of H.

2.2 NMF methods

Two NMF methods were considered: accelerated hierarchical alternating least
squares NMF (aHALS NMF) and hierarchical NMF (hNMF). aHALS NMF [7]
is a member of the family of alternating least squares (ALS) NMF methods.
These methods iteratively solve the convex subproblems of finding H when W
is fixed, and vice-versa, using ALS. aHALS has shown improved computational
efficiency compared to other ALS methods [7]. hNMF has been introduced in
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previous MRI studies on brain tumor characterization [6]. It consists of a 2-level
approach, assigning tissue types which are most similar to the same source after
a first level of rank-2 NMF. Tissue-specific sources are obtained after the second
level of NMF. hNMF has shown improved differentiation and segmentation of
the pathologic tissue types in brain tumors compared to aHALS NMF [6].

2.3 Successive projection algorithm

Under the assumptions of near-separable NMF [5], the n data points of X ∈
Rm×n

+ will span a convex hull in m-dimensional space. In the context of NMF,
the vertices of the convex hull correspond to the sources. SPA fits well with this
geometrical interpretation, as it aims at finding the vertices [5]. The data point
x1 with the highest l2-norm is selected as the first vertex. All data points are
then projected onto the orthogonal complement of x1. The data point with the
highest l2-norm in this projected subspace will be the second vertex. In a similar
way, the third vertex is found as the data point with the highest l2-norm in the
orthogonal subspace of the first 2 vertices, and so on. The algorithm stops when
r vertices have been found, with r equal to the NMF rank. The vertices are
assigned to the columns of W0. SPA does not directly provide an initialization
for the abundance matrix, H0. Based on W0, we used nonnegative least squares
fitting to obtain H0. Initialization obtained from SPA is compared to repetitive
random initialization (rRandom), where the elements of W0 and H0 are set to
pseudo-random nonnegative values between 0 and 1 at each run. Empirically,
we found that 30 random runs were sufficient for the NMF problem at hand to
obtain reproducible results. For rRandom, the final NMF result is selected from
the random run with the lowest residual error as defined in Equation 2. For the
remainder of this article, NMF analysis using SPA initialization will be denoted
as NMFSPA and NMF using rRandom as NMFrRandom.

2.4 Validation

Segmentation of the pathologic tissue types, i.e. actively growing tumor, necro-
sis and edema, was obtained from NMF by applying k-means clustering to the
abundance values of H. As it is assumed that each source and its associated
abundances correspond to one tissue type, we initialized the cluster centroids by
setting one abundance value to 1 and all others to 0. NMF segmentations are
compared to manual segmentation by an experienced radiologist. Segmentation
overlap was quantified using the Dice-score [8]. Dice-scores were calculated for 3
tissue classes, as defined in the BraTS challenge [8]: active tumor, the tumor core
(i.e. active tumor and necrosis) and the whole tumor (tumor core and edema).

To assess the quality of the NMF sources, correlation coefficients were calcu-
lated as the normalized internal product of the source vector and the averaged
feature vector of the corresponding tissue region segmented by the radiologist.
Correlation coefficients were calculated for active tumor and necrosis.
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3 Results

Table 1 shows the mean Dice-scores and correlation coefficients for both NMF
methods with SPA and rRandom initialization. Higher Dice-scores are found
for hNMF compared to aHALS. For both NMF methods, the results are very
similar between NMFSPA and NMFrRandom, with differences in mean Dice-
score not exceeding 1% for any of the tissue classes. Statistical significance of
the differences could not be shown using a two-tailed Wilcoxon signed rank test.
For the correlation coefficients, hNMF shows higher values compared to aHALS.
With correlation values close to 0.90, the hNMF sources can be considered as
tissue-specific patterns. Differences between NMFSPA and NMFrRandom were
also low for the correlation coefficients, and statistical significance could not be
shown in any of the cases.

aHALS NMF hNMF
SPA rRandom SPA rRandom

Dice active
tumor [%]

65± 13 64± 19 69± 15 70± 14

Dice tumor
core [%]

76± 11 76± 11 78± 12 78± 12

Dice whole
tumor [%]

78± 12 78± 14 86± 8 85± 8

Corr active
tumor

0.78± 0.17 0.81± 0.09 0.89± 0.09 0.90± 0.07

Corr
necrosis

0.78± 0.15 0.77± 0.11 0.91± 0.07 0.90± 0.07

Table 1: Comparison of the mean Dice-scores and correlation coefficients and
their standard deviation between SPA and rRandom initialization.

4 Discussion and conclusions

Unlike most studies about NMF initialization, we did not assess NMF perfor-
mance in terms of the final residual of the cost function. As was pointed out in
[4], a lower residual error does not warrant a better parts-based solution. We
assessed the quality of the NMF result using direct validation of the problem at
hand: the NMF sources were validated by means of the correlation coefficients,
and the NMF abundances by means of the Dice-scores. Mean Dice-scores and
correlation coefficients were very similar between SPA and rRandom and sta-
tistical significance of the differences could not be shown for any tissue class.
Several studies have reported similar performance for advanced initialization
methods compared to random initialization in terms of the residual error, al-
though the errors were generally slightly higher for the advanced methods [4, 1].
A more advanced initialization method can be more restrictive to the final so-
lution, as the NMF method might not be able to pull the factorization out of
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a local minimum [3]. This means that a realistic first estimate of the sources is
important when using advanced initialization, and the sensitivity of the NMF
method to the initialization will also play a role. In terms of computation time,
SPA is fast, taking about 0.01 seconds to estimate the sources for one patient’s
multi-parametric MRI dataset (i.e. input matrix X containing 24 rows and ap-
proximately 30000 columns). In contrast, other initialization methods such as
co-occurrence initialization [1] and most clustering-based methods [3] require
computation times which are comparable or even higher than for the NMF anal-
ysis itself.

It is important to note that SPA assumes the NMF problem to be near-separable
[5], which is equivalent to the spatial representation of the input data by a con-
vex hull. When this assumption is only approximately valid, or especially in the
case of highly-mixed NMF problems, it is improbable that SPA directly provides
the right sources. Therefore, it seems feasible to apply SPA as an initialization
strategy rather than as a direct endmember extraction tool. Unlike most previ-
ous studies, we have considered repetitive random initialization as a reference,
such that the reported results are reproducible. Compared to rRandom, SPA
shows similar performance in terms of segmentation quality of the pathologic
tissue classes.
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6 Appendix

Conventional imaging consisted of a 3-dimensional T1-weighted gradient-echo se-
quence (MPRAGE) (field of view (FOV) read = 220mm, voxel size 0.9×0.9×0.9mm3,
Repetition Time (TR) = 1550ms, Echo Time (TE) = 2.39ms, Inversion Time (TI) =
900ms, matrix size 256× 256, GRAPPA factor 2, flip angle = 9◦) and a 3-dimensional
fluid inversion recovery sequence (FLAIR) (FOV read = 250mm, voxel size 1×1×1mm3,
TR = 6000ms, TE = 421ms, TI = 2100ms, matrix size 256× 238, GRAPPA factor 2).
Perfusion-weighted imaging was performed using a T2*-weighted echo-planar imag-
ing sequence (TR = 1000ms, TE = 29ms, FOV = 230 × 230mm2, matrix size =
128 × 128, voxel size = 1.8 × 1.8 × 5mm3, GRAPPA factor 2, flip angle = 90◦). 90
multi-section acquisitions were acquired at 1 second intervals. A 0.1mmol/kg body
weight bolus of gadobutrol (Gadovist, Bayer) was injected at a rate of 4ml/s, followed
by a 20ml bolus of sodium chloride solution at 4ml/s. Cerebral Blood Volume maps
were calculated with DSCoMAN (Duke University, Durham, NC).
Axial diffusion-weighted images were acquired using a fast single-shot gradient-
echo echo-planar imaging sequence with diffusion gradient b-values of 0, 500 and
1000s/mm2 (voxel size 2.0 × 2.0 × 3.0mm3, TR = 5400ms, TE = 80ms, number of
averages = 3). Apparent Diffusion Coefficient maps were derived from the 3 b-values
using weighted linear least squares fitting.
3D proton magnetic resonance spectroscopic imaging with long TE was in-
cluded. A volume of interest of 80× 80mm2 including tumour and normal brain tissue
was positioned based on the FLAIR sequence. Magnetic resonance parameters were
TR = 1700ms, TE = 135ms, flip angle = 90◦, FOV = 160 × 160mm2, voxel size
10× 10× 15mm3, acquisition bandwidth 1200Hz, number of averages = 3. The follow-
ing metabolites were quantified as described in [6]: lipids, lactate, N-acetyl aspartate,
glutamine+glutamate, creatine and choline.
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