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Abstract. Generalization is a common issue for automatic speech recog-
nition. A successful method used to improve recognition results consists
of training a single system to solve multiple related tasks in parallel. This
overview investigates which auxiliary tasks are helpful for speech recogni-
tion when multi-task learning is applied on a deep learning based acoustic
model. The impact of multi-task learning on speech recognition related
tasks, such as speaker adaptation, or robustness to noise, is also examined.

1 Introduction

Over the last few years, deep learning based acoustic models significantly out-
performed Gaussian Mixture Models (GMM) for Automatic Speech Recognition
(ASR) [1]. Specifically, Deep Neural Networks (DNN) discriminative learning
offers a better fit for data modeling than the generative GMM [2]. This is due
to the many levels of non-linearities of DNNs and their ability to assimilate
higher levels of abstract concepts as the network deepness increases. Addition-
ally, recent years advances in hardware and machine learning algorithms drasti-
cally improved DNN efficiency compared to GMM. In contrast with classic fully
connected DNNs, more sophisticated methods take advantage of various spe-
cific hidden-connections architectures to further improve recognition accuracy.
Among them can be cited Convolutional Neural Networks (CNN), where shared
connection weights are applied to different localized patches [3]. Or Recurrent
Neural Networks (RNN), which contain backward connections, thereby adding
a temporal memory [4]. Despite this progress, overfitting tends to be a major
issue for this deep learning algorithms. Indeed, with limited training data, the
network learns good representation for the training set, which does not neces-
sarily generalize well to test data, a problem commonly know as “overfitting“.
Several regularization methods try to improve generalization. For instance it is
possible to stop training immediately when recognition drops on a validation set
(early-stopping) [5]. Other methods investigate L1 and L2 regularization, adding
a term to the cost function favoring sparse internal representation, which has
shown to generalize better [6]. Lately, dropout has demonstrated promising re-
sults, by randomly dropping units during training, leading to a thinned neural
network [7]. The main limitation with these methods is that the network ability
to generalize is constrained by the recognition task. This leads to the intuition
that overfitting can be reduced if the network is also asked to learn meaning-
ful information, while estimating phoneme posterior probabilities for ASR. This
scheme is referred to as Multi-Task Learning (MTL) [8]. The main idea is to
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train a single neural network to solve in parallel a main task, plus at least one
auxiliary task.

In this paper, we will review the literature in MTL applied to ASR and see
how MTL can increase the neural network generalization ability. This overview
is organized as follows. In Section 2, MTL mechanisms will be described. The
auxiliary tasks applied to ASR are presented in Section 3. Also, Section 3 gives
a quick glance at MTL impact on other speech recognition related tasks. Finally
we conclude and discuss the benefits of MTL for ASR in Section 4.

2 Multi-Task Learning

Multi-Task Learning was initially introduced in 1997 [8]. As suggested earlier,
the idea is to train a neural network jointly for several different, but related
tasks. Most often, the network learns one main task, and additionally to it one,
two or more auxiliary tasks. The auxiliary tasks aim at helping the model to
converge better, to the benefit of the main task. An illustration is presented in
Figure 1, where the MTL has one main task and N auxiliary tasks. All MTL
systems share two fundamental characteristics: a) all tasks are trained on the
same input features, b) all tasks share the same internal representation. In order
to update the network’s parameters, the error will be backpropagated through
the hidden layers of the network. In MTL, each task contributes to the cost
function with a term:

εMTL = εMain +

N∑
n=1

λn ∗ εAuxn ,

where εx is the cost function to be minimized, λn is a nonnegative weight and
N the total number of auxiliary tasks. A λn closer to 1 means that the nth

auxiliary task will be as impacting as the main task, whereas a λn near 0 means
that the auxiliary task has no influence on training. Usually, at test time, the
auxiliary tasks are dropped, keeping only the neural network outputs for the
main task. When the auxiliary tasks are well selected, MTL can help the model
to improve its robustness to unseen data, thus, leading to better generalization.
This method is especially efficient on limited datasets. Sharing the information
among several tasks leads to higher performances compared to processing each
task independently [8].

3 Auxiliary Tasks

Recently, MTL associated to DNN modeling has been successfully applied to
several areas of speech and language processing, such as speech synthesis [9],
speaker verification [10], multilingual speech recognition1 [11, 12, 13], spoken

1MTL for Multilingual ASR is a particular case of MTL, as there is no main or auxiliary
tasks, but all tasks/languages have the same impact. Additionally, for this scenario, several
databases are used, which is not the case for classic ASR MTL.
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Fig. 1: A Multi-Task Learning network with one main task and N auxiliary
tasks.

language understanding [14, 15], or natural language processing [16]. This study
focuses on the use of MTL for the specific task of automatic speech recognition.
In this section we will first investigate which auxiliary tasks are promising for
ASR in general. We will also consider the helpful auxiliary tasks for other prob-
lems related to ASR, such as speaker adaptation, or ASR in noisy environment.
A summary can be found in Table 1, where the relative improvement of MTL is
compared to Single-Task Learning (STL), depending of the auxiliary tasks.

3.1 For Speech Recognition

3.1.1 Gender

Gender classification is one of the first auxiliary task that has been tested for
ASR. Two (male/female) [17] or three (male/female/silence) [18] additional out-
put nodes are added as auxiliary task after a RNN model. Even though this
auxiliary task by itself does not seem very interesting, its association with an-
other auxiliary task gives encouraging outcomes [17]. Another study also applies
this auxiliary task after a RNN, and obtains its best Word Error Rate (WER)
in comparison to the auxiliary task presented in the next subsection [18].

3.1.2 Phonetic units

Phonetic units are also considered as auxiliary task. A simple approach consists
of using phoneme classification as an auxiliary task of a MTL DNN system [19],
the purpose being to give the system indications about the similarity among
acoustic states. Using even broader phonetic classes (such as plosive, fricative,
nasal, . . . ) is not efficient for MTL speech recognition [18].

3.1.3 Symbolic units

Instead of using phonetic-related representations, some studies focused on other
representations of speech, such as graphemes. A grapheme is as symbolic rep-
resentation of a phoneme, namely a character or group of characters from the
alphabet that represent a sound. Estimating only graphemes as an auxiliary
task degrades recognition accuracy [18].
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3.1.4 Context

Another way to augment ASR generalization ability is to force the model to
estimate local context. Giving a temporal context, by using as auxiliary task the
next and previous frame’s acoustic state, is an effective approach. Furthermore,
estimating the left and right phoneme context is even more efficient [19]. Lastly,
using graphemes can be helpful, if the context is added. For instance computing
trigrapheme posterior probabilities as an auxiliary task improves recognition [20].
Besides using trigrapheme, Chen et al. also investigate two variants of the classic
MTL DNN scheme. A first model (MTL1) does not drop the auxiliary task at
test time, but combines both tasks outputs using a weighted voting scheme,
ROVER [21]. While a second model (MTL2), uses a MTL with trigrapheme
posterior probability estimation as a subtask that is fed to a second DNN. MTL2

is depicted in Figure 2. Both MTL1 and MTL2 outperform the classic MTL
approach, with MTL1 showing slightly better accuracy results.

Input features DNN 1 (MTL)

Grapheme 

estimation

DNN 2
Phone 

estimation

Fig. 2: MTL variant example. DNN 1 uses MTL to estimate trigrapheme pos-
terior probabilities as an auxiliary task. The obtained estimates are then fed as
complementary input to DNN 2 for classic ASR classification.

3.2 For ASR Speaker Adaptation

Speaker adaptation for ASR systems can be tricky, especially when the amount
of adaptation data is limited. Huan et al. propose a MTL based adaptation
scheme [22]: 1) A speaker-independent (SI) training is performed on a STL DNN
for senone (tied-state triphones) classification using 7240 sentences. 2) The last
weight matrix is expanded with connections corresponding to the auxiliary task:
phoneme or senone-cluster estimation. 3) This weight matrix is fine-tuned using
the 7240 sentences SI training data, while the rest of the DNN hidden parameters
are fixed. 4) A Linear Hidden Network (LHN) [23] is inserted between the last
hidden layer and the last weight matrix. The LHN is an identity matrix with
zero bias. 5) Finally the LHN is updated by supervised adaptation using 1 to
40 sentences per speaker, while all the other parameters of the DNN are fixed.

Adapting only the LHN helps avoiding overfitting when the amount of adap-
tation data is limited, as the LHN number of parameters is way smaller than the
DNN parameters. Results show that for a small number of adaptation sentences
(1 or 2 sentences) using senone-cluster estimation as an auxiliary task gives
better WER, whereas for more adaptation data (5 to 40 sentences) phoneme
classification as auxiliary task performs better [22].
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3.3 For Noise-Robust Speech Recognition

The degradations caused by noise and reverberation are a common problem for
speech recognition. Learning complementary information about the acoustic
environment can be fruitful for the speech recognition task. Thus, generating
denoised speech, also referred to as speech enhancement (SE), is an effective
auxiliary task for noise-robust ASR [17, 24]. Interestingly, using SE as an aux-
iliary task significantly improves the WER from lower Signal-to-Noise Ratio
(SNR=-5dB) to relatively high SNR (SNR=25dB) [17].

Auxiliary task Database
Relative

Metric
improvement(%)

Gender [18] WSJ0* 8.36 WER

Phonetic units
Broad phonetic classes (plosive, fricative, . . . ) [18] WSJ0* -12.67 WER
Phoneme [19] TIMIT 0.46 PER

Symbolic units Grapheme [18] WSJ0* -1.53 WER

Context

Frame [19] TIMIT 3.00 PER
Phoneme [19] TIMIT 6.38 PER
Grapheme [20] Lwazi Speech Corpus* 4.80 ER
MTL1 Grapheme (see section 3.1.4) [20] Lwazi Speech Corpus* 9.36 ER
MTL2 Grapheme (see section 3.1.4) [20] Lwazi Speech Corpus* 8.59 ER

Speaker adaptation
Phoneme (1 adaptation sentence) [22] WSJ0* 5.43 WER
Senone-cluster (40 adaptation sentences) [22] WSJ0* 10.75 WER

Speech enhancement [24] CHiME 2 2.38 WER

Table 1: Relative MTL improvement comparing to STL for different auxiliary
tasks. < Database name >* implies that only a partial part of this database is
used. PER stands for Phone Error Rate, and ER for Error Rate2.

4 Conclusion and Discussion

In this paper, we gave an overview of multi-task learning applications for speech
recognition, and more specifically the auxiliary tasks improving generalization.
MTL is interesting technique as it increases generalization without requiring
external data. Having one shared structure to update is also a positive aspect,
leading to no major increase of the computational time, while improving the
recognition accuracy. Nevertheless, using MTL also implies a preparation of
the auxiliary task labels. Another problematic that occurs with MTL, consists
of dealing with a possible temporality difference between the main task and the
auxiliary task(s). For instance, gender recognition could require longer temporal
information than phoneme recognition. Modeling features with memory-based
deep neural networks such as the recurrent networks is then a promising solution.
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2ER = 100% - percentage of correctly recognized words, while WER depends of the inser-
tions, deletions and substitutions. Thus, WER can be greater than 100%, contrary to ER.
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