ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Comparison of three algorithms for parametric
change-point detection

Cynthia Faure!, Jean-Marc Bardet!, Madalina Olteanu® and Jéréme Lacaille?

1- SAMM EA 4543, Université Panthéon Sorbonne, Paris, France
2- Snecma (Safran Group), France

Abstract. Numerous sensors placed on aircraft engines capture a consid-
erable amount of data during tests or flights. In order to detect potential
crucial changes of characteristic features, it is relevant to develop powerful
statistical algorithms. This manuscript aims at detecting change-points,
in an off-line framework, in piecewise-linear models and with an unknown
number of change-points. In this context, three recent algorithms are con-
sidered, implemented and compared on simulated and real data.

1 Introduction

Numerous sensors placed on aircraft engines capture a considerable amount of
data and monitor these engines in order to ensure the operational reliability
during flights. The present manuscript is concerned with the study of several
time series issued from flights on aircrafts equipped with SNECMA engines, and
representing different recorded features : exogenous (lever, altitude, ...) and
endogenous (temperature, ...). Detecting change-points in these data may be
seen as a first step in the identification of a potential abnormality of the engine.
Hence, the aim of this paper is to search for an efficient change-point detection
method, with a low computational cost and a high performance. The framework
chosen here is the off-line parametric change-point detection, with an unknown
number of change-points. Training a parametric model that fits all available
recorded features is not an easy task, mainly because of the heterogeneity of
the data. To begin, we focused on data having a piecewise linear behavior.
Hence, the algorithms to be further introduced will search for change-points in
the slope. We will see further that this framework is not too constraining, since
the algorithms to be presented may be applied on any time-series, as long as an
appropriate cost-function is defined.

Detecting change-points in the slope of a time-series can be achieved, for
instance, by minimizing the least-squared residuals contrast, as described in the
seminal paper [1]. Since the number of change-points is unknown, a penalty
term is usually added to the contrast function, as proposed in [2]. Then, the
penalized contrast function may be minimized using various approaches based on
dynamic programming. Three of these algorithms are investigated here : optimal
partitioning [OP] (see, for instance, [3]), pruned exact linear time method [PELT]
(see [4]) and slope heuristics using the slope estimation procedure [SEP] (see
[5]). OP and PELT algorithms are both searching for the optimal partition
minimizing the penalized contrast function, but the interest of PELT is a reduced
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computational time : the complexity of OP is quadratic, while the complexity
of PELT is linear. Both methods require the a priori choice of a penalty term,
usually the AIC or the BIC penalties. The interest of SEP comes from choice of
the penalty, which is data driven. The slope heuristics in the framework of model
selection was introduced in [5]. [6] further developed slope heuristics in a more
general context, and then the SEP was adapted to the change-point detection
issue by [7] and [8].

The rest of paper is organized as follows : section 2 summarizes the basic
knowledge in off-line parametric change-point detection, and introduces the OP,
PELT and SEP algorithms. Numerical applications are presented in Section 3.

2 Background

Let Y = (Y1,...,Yn) be a sequence of random variables. For ¢t € {1,..., N},
suppose that Y; is a function of X; € RP, where X; is a random or deter-
ministic vector. Also, assume there exists K* (unknown) parametric changes
in the relationship between (Y;) and (X;) : there exists an unknown vector
(t5,...,75.) € NK" such that 7 < 75 < --- < 7&., and K* + 1 unknown
vectors 0 € RP satisfying Y; = go: (Xy,&¢) when t € {Ti* +1,77+2,..., Ti*+1},
where by convention 75 = 0 and 75.,.; = N. (e1,...,en) is a family of ran-
dom vectors (unobserved) and (6, z,e) € R? x R? x R — gyp(z,e) is a known
or chosen function. The paper aims at estimating K*, (77,...,75.) and (67);,
the parameters of the “true” model to be retrieved from an observed sample.
The off-line change-point detection strategy chosen here consists in minimizing
in (K, (1:),(0;)) a penalized contrast defined by :

K Tit1

> OV, X, 0:) + BFE), 1)

i=0 t=7;+1
where the cost function C' may be defined, for example, as a quadratic loss or
a -log-likelihood (see for instance [9]). The term Sf(K) is the penalty which
prevents from overfitting. The choice of the penalty term is usually linear
(for instance, AIC or BIC) in the number of break points. The minimiza-
tion of contrast (1) can be simplified by plugging the estimates of ;. Let
fu = argming g, > w1 C(Ye, X4, 0) be the estimate of 6§ computed in the
time-interval {u + 1,...,v}. Then, the change-point detection problem becomes:

K Ti+1

(K,#1,...,7z) = argmin {Z > C(Yi, X1, 0r,7,s,) +ﬂf(K)} (2)
K1 <7< <Tk i=0 t=1,+1

Remark: In Section 3, devoted to numerical applications, the case of a linear

model depending on the time only is considered. In this case, X; = (¢,1),

0r = (9:(1),9:(2)) and gg(x,e) =< x,0 > +e, with < -, > the inner product.

Classical least squares estimates are chosen for 6 and the cost function to be

minimized is the MDL (minimum description length), [10] : C(Y;, X4, 64,0) =
3In(v —u) 4 (v —u)log(276?), where 62 = A% (Y, — o)t — %22,)2

v—u
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2.1 Optimal partitioning [OP]

The optimal partitioning [OP] algorithm used here for minimizing the penalized
contrast in (2) was first described in [3]. The idea is to use dynamical program-
ming in order to reduce the exponential complexity of an exhaustive search to a
quadratic one. With the previous notations, a change-point occurs between the
instants v and v if there exists some instant © < ! < v such that

1 v v
S OV Xe )+ Y CYVL X, 000) +B< > C(Ve, Xe,0u0)  (3)

t=u+1 t=Il+1 t=u+1

Using criterion (3), the OP algorithm scans the data iteratively and associates
the optimal value of the penalized contrast, F'(Y1.,), to each subsample Y7., =
(Y1,...,Y,). The proof that F (Y7.,) contains the minimum of the penalized
contrast for each u = 1,..., N, may be sketched by the following recursion :
F(in) = min {P(0R) + 2,0 C Y, Xi, ) + 8

e

One may see immediately that the time instant 7 which gives the optimal
F(Y1.n) corresponds to the last change-point before N. The algorithm computes
iteratively Fl:N = (F(lel), ceey F(YLN)) and CPLN = (CP(Yl:l), caey OP(YlN)),
where F(Y1.,) is the minimum value of the penalized contrast and C'P(Y7.,)
represents the last change point before w, for each subsample Y7, = (Y1, ..., Ya),
u = 1,...,N. The optimal partition may be retrieved by scanning backwards
CPy.n. The OP algorithm is summarized in Procedure 1 hereafter.

2.2 Pruned Exact Linear Time [PELT]

Introduced in [4], the PELT algorithm aims at reducing the computational com-
plexity of the OP algorithm, while still retrieving the optimal solution. This is
achieved by pruning the set of possible solutions when minimizing F(Y7.,). Prun-
ing is justified by the following property of change-points, proven in [4]: if equa-
tion (3) holds for some v <! < v and if F(Y1.,) + Zi:uﬂ C(Ys, X4, 0u1) + 8 >
F (Y1), then u can never be the last change-point before v. Pruning the set
of possible change-points reduces the quadratic complexity of OP to a linear
one. The algorithm, which consists in adding a supplementary step to the OP
procedure, is summarized in Procedure 2.

2.3 Slope estimation procedure [SEP]

In both algorithms previously described, the penalty term has to be a priori
chosen. Usually, AIC or BIC penalty terms are used in practice, with a slight
preference for the BIC, justified by its parsimony and consistency properties.
However, in some cases, a priori choices for the penalty term may not be exactly
appropriate for the data and the problem to be solved. Recently, a data-driven
model for calibrating the penalty term, called “slope heuristics”, was introduced
in [5]. In this paper, the optimal penalty is selected using the slope estimation
procedure described in [6]. The contrast function C' is minimized for a fixed
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number of change-points, K, with K varying from 1 up to some fixed bound,
Kinaz- Then, the optimal values of C' for K = 1, ..., K,pq: are plotted. The
resulting scatterplot has a linear behavior once K becomes “big enough”, as
shown in Figure 1. The optimal penalty is then chosen as twice the slope of the
linear model. The algorithm is briefly described in Procedure 3. While the slope
heuristics allows to have a data-driven penalty, its main drawback is the compu-
tational complexity. Indeed, the SEP algorithm requires to repeat K,,q, times
a non-penalized change-point detection method (using dynamical programming
with complexity O(N?) at each run) in order to estimate the slope a.

Procedure 1: Optimal Partitioning [OP]
e Initialize F(Y7.1) =0 and CP = NULL.

e For u =1,..., N, compute iteratively (forward) F'(Y1.,) and the cor-

veey

e Compute iteratively (backward) the optimal change points :
T < argming _ y F(Yi.n) , Tk-1 ¢ argming - F(Y1.55) 5 -

Procedure 2: Pruned Ezact Linear Time [PELT]
o Initialize F'(Y1.;) = =8, R={1} and CP = NULL
e For u =1,..., N, compute iteratively (forward) F'(Y1.,) and the cor-
responding break point : 7 = argmin,cg F(Y1.,) , CP=CPUT.
Update the set of plausible change-points, R :
R« {veRUT : F(Yi.o))+ > 11 C(Ye, X4, 00 7) + B < F(Yiir)}

e Compute iteratively (backward) the optimal change points :
T < argming _ y F(Yi.n), Tk-1 4+ argming - F(Y1.25) 5 -

Procedure 3: Slope Estimation Procedure [SEP]

e Compute, for K =1, ..., Kppqy ¢
. K 4 ~
C(K) = m1n7'0<7'1<-~~<7'K<7'K+1 Zi:o Z:+7—li+1 C(}fthta 07'71,T7:+1)

e Draw the scatterplot (K, C(K))i<k<K,n..

e Compute the slope a of the linear model for K “big enough”

e The optimal penalty term will be g = —2«

3 Numerical applications

3.1 Simulated data

Two scenarios were considered for simulations: (A) a time series of length N =
300 and three random change points, and (B) a time series of length N =
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AN =300,k =3 3 PELT | SEP(Kynay = 10)
Exact number of cp 90.0% 89.0% 90.0%
Performance (|7; — 7| <5 ) || 85.2%[17.6] | 90.0% [5.4] 93.0% [14.0]

Time (seconds) 2.1 [0.1] 0.1 [0.0] 32.3 10.8]
BN = 1000,k =6 opP PELT | SEP(Kypay = 15)
Exact number of cp 90.6% 82.7% 95.0%
Performance (|7; — 7| <10) || 97.0% [7.2] | 99.0% [1.0] 99.8% [2.0]
Time (seconds) 32.6 [5.1] 0.4 [0.1] 670.0 [30.0]

Table 1: Performances on simulated data (1000 samples for each scenario)

1000 and six random change points. For each scenario, the time series was
replicated 1000 times. A condition on the slopes was added in order to ensure
the continuity of the data. The BIC penalty was used both in the OP and
PELT algorithms. Three performance criteria were considered: the proportion
(among the 1000 replications) of correctly identified change-points (3 for scenario
A and 6 for B); the precision: among the simulations with a well identified
number of change-points, the precision of these change-points, measured by the
absolute difference |7; — 7;|; the computational time. The results summarizing
the experiments (mean values with standard-errors in brackets) are available
in Table 1. Although the SEP procedure achieves the best results in terms of
accuracy, its computational complexity becomes very heavy for a relatively long
series (1000 data).

3.2 Real data

According to the previous section, PELT achieves the best trade-off between
accuracy of results and computational time. Hence, this method was selected to
be trained and tested on large real data. The database we used was provided
by SNECMA and contains high-frequency records (from 1Hz to 100 Hz), for
various features captured by the sensors and with various lengths (from a few
hundreds to some tens of thousands points). For illustration, the change-points
detected on two features (shaft speed and engine temperature) are represented
in Figure 2. The behavior of these two features is mainly piecewise linear, hence
the PELT algorithm previously described and used for simulations was used as
such, but for more complex time-series, it is sufficient to select a more appropri-
ate cost-function C and train exactly the same algorithm described in Procedure
2. Globally, the change-points are well detected, even the small ones. The
meaning of each change-point is settled afterwards with the help of experts. A
change-point may be observed, for instance, after an action of the pilot (pulling
the lever). Detecting these change-points allows to assume causal relations be-
tween different features with some delay (a raise of the lever implies a raise of
the shaft speed). Eventually, machine-learning techniques which will learn the
“normal” change-points and set alarms for “abnormal” change-points may be
applied afterwards in an operational context.
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Fig. 1: Representation of the cost function (not penalized) for 1 < K < K40
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Fig. 2: Change-points (PELT) on the shaft speed and on the engine temperature
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