
Towards incremental deep learning: multi-level
change detection in a hierarchical recognition

architecture

Thomas Hecht, Alexander Gepperth ∗

U2IS, ENSTA ParisTech
INRIA, Université Paris-Saclay

828 bd des Maréchaux, 91762 Palaiseau Cedex
France

Abstract. We present a trainable hierarchical architecture capable of
detecting newness (or outliers) at all hierarchical levels. This contribu-
tion paves the way for deep neural architectures that are able to learn
in an incremental fashion, for which the ability to detect newness is an
indispensable prerequisite. We verify the ability to detect newness by con-
ducting experiments on the MNIST database, where we introduce either
localized changes, by adding noise to a small patch of the input, or global
changes, by changing the global arrangement of local patterns which is not
detectable at the local level.

1 Introduction

This study is conducted in the context of hierarchical incremental learning al-
gorithms. It is a proof-of-concept type study - a first work toward hierarchical
on-line models able to cope with concept drift - showing the capacity to de-
tect newness (or outliers) in a minimal hierarchical architecture operating on a
semi-realistic but widely known and accepted benchmark database in machine
learning, the MNIST dataset [1].

Incremental learning algorithms are, roughly speaking, algorithms that can
take examples one by one, without knowing their number in advance, and which
can deal with changes in the input statistics without requiring a complete re-
training with all data. An important prerequisite for incremental learning is the
detection of newness or change: if an algorithm is supposed to track changing
data statistics, it first of all needs to be able to detect change [2]. To our knowl-
edge, all existing incremental learning algorithms possess this property (see [3]
for a review): some algorithms achieve it by an adaptive subdivision of the input
space, e.g., [4, 5, 6, 7], where local models are learned in each sub-volume, other
achieve this by using prototypes to directly approximate the data distribution
in input space [8, 9].

On the other hand, while hierarchical learning algorithms are currently show-
ing very promising perspectives, all existing incremental learning algorithms are,
to our knowledge, ”flat” architectures : although the input space is decomposed

∗Dr. Alexander Gepperth is also with INRIA FLOWERS. Thomas Hecht gratefully ac-
knowledges funding support by the “Direction Générale de l’Armement” (DGA) and École
Polytechnique.

393

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 1: The minimalist hierarchical system used in this study, composed of input
layer, hidden layer and top layer.

into sub-volumes, the input vectors themselves are not, such as convolutional
neural networks do when they analyze their inputs by local receptive fields. Es-
pecially prototype-based incremental learning methods [9, 8] could profit greatly
from hierarchies namely by strongly reduced memory requirements for storing
prototypes. In this case, change detection would have to work on all levels of
a hierarchical incremental architecture, apart from the issue of learning rules
that would react to such changes which will not be treated here. The goal of
this contribution is finally to demonstrate multi-level concept drift detection in
a minimalist hierarchical extension of the prototype-based incremental archi-
tecture proposed in [9]. This architecture, for which excellent performance on
real-world benchmarks has been demonstrated [9, 10], is a first step towards
feedback controlled deep incremental learning at different scales.

The architecture contains three layers as depicted in Fig. 1, where separate
hidden-layer maps try to represent local receptive fields in the input, and the
top-layer map aims at representing the union of all hidden-layer map activities1.

Change detection should be activated in different layers depending on the
type of change that occurs: if it exclusively occurs inside a local receptive
field, the hidden layer activities responsible for this receptive field should signal
change, whereas the top layer should react in case of global changes. Such global
changes may not even be detectable in the hidden layer because they can leave
hidden-layer statistics completely unaffected.

1Normally, the top layer would be connected to a readout mechanism inferring class at-
tributes as in [9], but, as classification performance on the MNIST database has already been
demonstrated in [9] for the ”flat” system, we omit it here and focus on change detection.

394

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 2: Illustration of the experimental protocol. Left: partitioning of a 28x28
pixels MNIST sample into 2x2 receptive fields (RFs) of 14x14 pixels each. Mid-
dle: application of a local change, replacing a single RF by white noise. Right:
application of global change, by mixing the left and right halves of different
MNIST samples. The local patterns inside the RFs are not, statistically speak-
ing, affected by this operation.

2 Methods

For representing both hidden and top layer inputs, we use a prototype-based
learning algorithm which is loosely based on the self-organizing map model,
see [9]. Inputs are represented by graded neural activities arranged in maps of
n× n units, organized on a two-dimensional grid lattice. Each unit’s associated
weight vector (its prototype) is updated using the learning rule and good prac-
tices proposed by Kohonen [11] which decreases learning rate ε(t) and Gaussian
neighborhood radius σ(t) from initially large values to their asymptotic values
ε∞, σ∞. Since the hidden-layer map activities are inputs to the top layer, they
need to be fully converged before top-layer selectivities are learned, which needs
to be ensured by a proper temporal organization of the training phase, see Sec. 3.

For any map X, the map activity zXij (t) at position (i, j) is derived from the

Euclidean distance between the unit prototype wXij (t) and the current input x(t):

zXij (t) = TF
(
gκ

(
||wXij (t)− x(t)||, i, j

))
(1)

where, as described in [9], gκ(·) is a Gaussian function with an adaptive pa-
rameter κ that converts distances into the [0, 1] interval, and TF(·) is a transfer
function. Differently from [9], we chose a transfer function that just keeps the
activity of the best-matching unit at coordinates (i∗, j∗):

TF(x, i, j) =

{
x if (i, j) = (i∗, j∗)
0 otherwise

(2)

3 Experiments

We fix the sizes of all hidden-layer maps to n×n = 6× 6; whereas the top-layer
map has size 10 × 10 neurons. As we apply our architecture to the MNIST
database [1], the original sample size is 28× 28 pixels. We use non-overlapping
receptive fields of 14× 14 pixels (see Fig. 2), which leads to 2x2=4 hidden-layer
maps. The asymptotic values of learning rate and neighbourhood radius are

395

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

ε∞ = 0.001 and σ∞ = 0.1 for all maps in the system. This set of parameters
corresponds to the best trade-off between sufficient change detection at differ-
ent scales, total number of weighed connections and quality of the top layer
self-organization for future classification use (not shown here). The principal
quantity investigated in this study is the activity of the best-matching unit for a
map X, denoted z∗X(t) (1), which is inversely related to the Euclidean distance
between sample and best-matching prototype. A significant deviation of z∗X(t)
from its long-term average value is interpreted as an indication of change.

3.1 Protocol

An experiment consists of T = 200000 random pattern presentations and is
conducted in three phases:

Hidden layer training From step 0 to 45.000, each hidden-layer map is
trained while top-layer learning and adaptive distance κ updating, see [9], is
disabled.

Top layer training From step 45.000 to 140.000, hidden-layer learning and
adaptive distance κ updating, see [9], is disabled and the top-layer map is trained
using the concatenation of hidden-layer map activations.

Testing From step 140.000 to the end, the data distribution is artificially
changed, without any prototype or adaptive distance adaptation.

Changes in data distribution can be either at the local level or the global
level, see Fig. 2. The former corresponds to a localized change within an RF
which should be detectable mainly by the hidden-layer maps. The latter should
affect the top-level map alone as only the global arrangement of patterns within
each RF changes w.r.t. the learning phase but not the local patterns themselves.
Local changes are produced by adding uniform noise, U(0, 1), to a single 14× 14
pixels RF content. Global changes are obtained by concatenating the left and
right half of two randomly chosen input samples, giving again a 28× 28 sample.

3.2 Results

Whether the neural architecture is fed with locally or globally modified inputs
starting at t = 140.000, the architecture clearly detects that a change occurred in
the data distribution, see Figs. 3, 4. Furthermore, the hierarchical organization
of the architecture allows to more accurately identify the type of change: Fig. 4
shows that a high-level change (see Fig. 2) can be detected in the top-level map
while hidden-layer activations stay unchanged. For local changes (see Fig. 2),
the reverse is the case: best-matching unit activations in the hidden-layer map
associated with the noised signal are severely affected. We observe a slight change
in average top-level layer activity as well, which is understandable as top-level
activations directly depend hidden-layer activations, so a change in the former
affects the latter. With a finer subdivision into receptive fields, a local change
in one RF would not have such a significant impact on top-level activations.

396

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

(a) Hidden layer (b) Top layer

Fig. 3: Detection of low-level change. Shown are best-matching unit activations
over time for all four hidden-layer maps (left) and top-layer map (right). Time
series have been post-processed by exponential smoothing with a parameter of
α = 0.005 for better visualization. Dotted lines indicate the case of no change.

(a) Hidden layer (b) Top layer

Fig. 4: Detection of high-level change. Shown are best-matching unit activations
over time for all four hidden-layer maps (left) and top-layer map (right). Time
series have been post-processed by exponential smoothing with a parameter of
α = 0.005 for better visualization. Dotted lines indicate the case of no change.

4 Discussion, conclusion, perspectives

This study has, first of all, outlined how a prototype-based incremental learning
architecture that is ”flat” could be generalized to a hierarchical architecture. In
this generalized architecture, we showed that it is possible to detect changes in
input statistics at all levels of the hierarchy. As change detection is an impor-
tant prerequisite for incremental learning, see Sec. 1, we remove an important
conceptual obstacle to using hierarchical prototype-based architectures in an in-
cremental fashion. This in turn is a desirable thing as prototype-based methods
are particularly suited for incremental learning [8, 9].

Hierarchical prototype-based methods might also remove another major ob-
stacle to wide-spread use : the curse of dimensionality. For difficult problems
in high-dimensional spaces, it stands to reason that a very high number of pro-

397

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

totypes might be required to accurately map data distributions. If however a
problem is partly factorisable, i.e., can be simplified by subdividing the input
into receptive fields whose content is approximately independent (as it is often
the case in visual processing), the size of the prototypes to be stored reduces
dramatically. If we denote the number of top-level units in the presented ar-
chitecture by T = 100, the number of hidden layer maps (each composed of h
units) by H = 4, and the input dimensionality by I = 784, we obtain for the
total number of weights W = h(I +TH) = 50.400. For a comparable ”flat” sys-
tem without hidden layer we would need W̃ = IT = 78400 connections already.
This difference between these two quantities can be increased by varying the free
parameter h: with maps of size h = 4 × 4 = 16 in the hidden layer, we obtain
W = 22400. If recognition performance is maintained, this offers a promising
way around the curse of dimensionality for prototype-based methods in general.

In future work, we wish to explore precisely these questions: can the pre-
sented (non-incremental) architecture obtain comparable classification results
(for MNIST, this seems to be the case but tests on other problems are needed)
? How far can we reduce h without sacrificing performance ? And, most impor-
tantly, we will investigate learning rules for hierarchical incremental learning,
with the goal of pushing the capacities of these architectures beyond the current
state of the art.

References

[1] Yann LeCun and Corinna Cortes. Mnist handwritten digit database. AT&T Labs [On-
line]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[2] Pallavi Kulkarni and Roshani Ade. Incremental learning from unbalanced data with
concept class, concept drift and missing features: a review. International Journal of
Data Mining and Knowledge Management Process, 4(6), 2014.

[3] Olivier Sigaud, Camille Salaün, and Vincent Padois. On-line regression algorithms for
learning mechanical models of robots: a survey. Robotics and Autonomous Systems,
59(12):1115–1129, 2011.

[4] Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental online learning in
high dimensions. Neural computation, 17(12):2602–2634, 2005.

[5] D. Nguyen-Tuong and J. Peters. Local gaussian processes regression for real-time model-
based robot control. In IEEE/RSJ International Conference on Intelligent Robot Sys-
tems, 2008.

[6] T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer. Incremental local online gaussian
mixture regression for imitation learning of multiple tasks. 2010.

[7] M. Butz, D. Goldberg, and P. Lanzi. Computational complexity of the xcs classifier
system. Foundations of Learning Classifier Systems, 51, 2005.

[8] L. Fischer, Hammer B., and H. Wersing. Certainty-based prototype insertion/deletion
for classification with metric adaptation. In Processings of the European Symposium on
Artificial Neural Networks (ESANN), 2015.

[9] A Gepperth and C Karaoguz. A bio-inspired incremental learning architecture for applied
perceptual problems. Cognitive Computation, 2015. accepted.

[10] Thomas Hecht, Alexander Gepperth, and Mandar Gogate. A generative learning approach
to sensor fusion and change detection. Cognitive Computation, 2015.

[11] T. Kohonen. Self-Organizing Maps. Springer, third, extended edition edition, 2001.

398

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

