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Abstract.

Text categorization is a problem which can be addressed by a semi-super-
vised learning classifier, since the annotation process is costly and pon-
derous. The semi-supervised approach is also adequate in the context of
social network text categorization, due to its adaptation to class distribu-
tion changes. This article presents a novel approach for semi-supervised
learning based on WiSARD classifier (SSW), and compares it to other al-
ready established mechanisms (S3VM and NB-EM), over three different
datasets. The novel approach showed to be up to fifty times faster than
S3VM and EM-NB with competitive accuracies.

1 Introduction

In the field of Data Mining, text categorization constitutes a problem which is
commonly tackled by supervised learning [1].Online Social Networks, however,
present some extra challenges to the traditional approaches: (i) pieces of texts
are very small; (ii) vocabulary is large; (iii) spelling is usually not corrected
and (iv) new terms (slang and hashtags) appear frequently. Moreover, public
opinion tends to change constantly, altering the distribution of data classes. As
a consequence, the annotation step of a supervised classification approach would
constitute a ponderous task. These conditions enhance the importance of using
unlabeled data in the training step, learning improvements for further revision
steps. Besides, semi-supervised learning is most useful whenever there is far more
unlabeled than labeled data. This is likely to occur when obtaining data points
is far cheaper (both computationally and financielly) than labelling them.[2].

WiSARD (Wilkie, Stonham & Aleksander’s Recognition Device) [3] is a RAM
based neural network. A WiSARD is composed of a set of individual classifiers,
called discriminators, each one assigned to learn binary patterns belonging to
a particular category. Therefore, a WiSARD has as many discriminators as
the number of categories it should be able to distinguish [4]. In stream data
mining context, WiSARD has the advantage of being a one shot classifier, al-
lowing incremental online learning. We adapted the classifier to perform text
categorization, using both labelled and unlabeled data.

In this paper, we compare our Semi-Supervised WiSARD (SSW) approach
with other two approaches: Semi-Supervised Support Vector Machines (S3VM)
[5] and Naive Bayes Expectation-Maximization [6]. The comparison was made
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over three different Datasets: Obama-McCain Debate (OMD) [7] and Stanford
Twitter Sentiment Gold (STS-Gold) [8], both from Twitter, and Polarity Dataset
v1.1 (IMDB) [9], from IMDB (Internet Movie Database). It was necessary to
adapt the datasets to contain only two classes, because the S3VM model used
as comparison was not able to perform multiclass categorization. We analyzed
fitting time, predicting time, accuracy and standard deviation.

2 Semi-Supervised WiSARD (SSW)

We propose Semi-Supervised WiSARD (SSW) as a self training classifier based
on WiSARD[3], which is a weightless neural network. WiSARD was first de-
veloped to recognize images, and the input pattern must be a binary feature
vector, which we call retina. The RAM contents are modified by adding training
patterns, so that incremental learning is performed. The training is supervised,
which implies having to know the label of all patterns. Each category has a
unique discriminator, which is composed by a set of RAMs. The RAM contents
are initialized with zeros. Training updates the memories. Each RAM, maps a
set of pseudo-randomized positions from the retina.

During the training, the input pattern bits define an addresses to access
the RAMs. Each RAM updates the value in the position addressed. When
predicting the class of a new pattern, WiSARD uses the same mapping to access
the RAMs’ addresses. If the address contains an integer higher than a predefined
value (threshold), 1 is summed to the discriminator response. WiSARD decides
the class of the predicting pattern by choosing the discriminator which returns
the highest value. The threshold can be incremented in order to filter lower
RAMs values in the case of a draw between two or more discriminators, or when
these values are too close. This process is called Bleaching [10].

To adapt WiSARD to work on a Semi-Supervised fashion, we propose the
use of a predicting confidence to decide which unlabeled pattern will be trained.
The confidence metric is the same that has already been used on the Bleaching
process: c = 1− r1/r2. Where r1 is the best result from a discriminator, and r2
is the second best result. This way, an unlabeled pattern is trained only if the
prediction confidence is greater than a predefined threshold. Text categorization
domain required another adaptation of WiSARD due the sparsity of the feature
vector. As many RAMs would access the zero position (those which all address
bits are zeros), the prediction would happen based on absent features. To work
around this issue, on full-zero patterns the memory does not contribute to the
discriminator response, on SSW.
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3 Metodology

3.1 Classifiers for Comparison

3.1.1 Semi-Supervised Support Vector Machines (S3VM)

The Semi-Supervised Support Vector Machine (S3VM) or Transductive SVM
(TSVM) [5] is one of the popular semi-supervised classification algorithms that
inherits the large-margin concept of SVMs [11]. In the transductive setting,
the learner can observe the examples in the test set and potentially exploit the
structure of their distribution [12]. A learning method is considered to be trans-
ductive if it only works on the labeled and unlabeled training data, not being
able to deal with unseen data [13]. However, some approaches like TSVM [14]
can be used as an inductive learning mechanism after the transductive learning
phase, for the unseen data.

There are very few works focused on transforming SVM into a semi-supervised
and multiclass approach [15]. S3VM model available was not suitable to per-
form multiclass classification. Its implementation is gradient-based [16] and the
author provided it at his website1.

3.1.2 Naive Bayes Expectation-Maximization (NB-EM)

Expectation-Maximization (EM) is a class of algorithms based on estimating
the maximum likelihood (maximum a posteriori) iteratively [6]. It assumes that
the documents are generated by a mixture of multinomials model, where each
mixture component corresponds to a class [6]. One possible generating model
for EM algorithms is Naive Bayes model. We used a Naive Bayes EM (NB-EM)
implementation by Mathieu Blondel2.

3.2 Datasets for Testing

Obama-McCain Debate (OMD) is a dataset composed by 3.238 tweets during the
first day of USA television presidential debate, in September, 2008 [7]. Stanford
Twitter Sentiment Gold (STS-Gold) is dataset which creation is based on a
dataset called Stanford Twitter Sentiment (STS). STS contains 1.6 milion of
tweets which labels were obtained thought emoticons [8]. STS-Gold is a sample
of STS manually annotated with two labels: positive and negative. Polarity
Dataset v1.1 (IMDB), which is a dataset of movie-reviews from Internet Movie
Database, is introduced in [9].

3.3 Preprocessing

The preprocessing applied over the documents from all datasets followed 5
phases: (i) transforming all documents to lower case; (ii) removing the punctua-
tions; (iii) removing links; (iv) removing mentions (”@” user name on Twitter);

1http://www.fabiangieseke.de/index.php/code/qns3vm
2https://gist.github.com/mblondel/f0789b921c98d0fe6868
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Table 1: Number of features for each dataset after preprocessing and removal of
classes, in order to leave only two classes.

Dataset #Features #Class 1 #Class 2

OMD 4848 1582 843

STS-Gold 4165 1401 632

IMDB 23151 700 700

(v) Stemming. The latter is a word standardization for text matching of mor-
phological related terms. It consists of removing affixes, thus reducing the word
to its stem [17]. The Porter Stemmer algorithm was applied at this step [18].

3.4 Experimental Design

The parameters for SSW (number of bits, boolean bleaching, confidence thresh-
old and semi-supervised confidence) and S3VM (kernel function, regularization
weight, unlabelled cost weight and sigma for RBF kernel) were obtained through
the application of a genetic algorithm, having accuracy as goal function. EM-NB
implementation had no parameters to optimize. In that genetic algorithm, for
each tuple of parameters, we instantiated a classifier and calculated the accu-
racy via repeated random sub-sampling validation. In this validation, 20% was
used for labeled training, 50% for unlabeled training and 30% for test. Since
unlabeled data carries less information than labeled data, it is required, in large
amounts of data, to significantly increase prediction accuracy [2]. After finding
the best parameters, we repeated the validation 100 times to calculate the accu-
racy, standard deviation, average time to train and average time to predict. We
included in the experiments a WiSARD classifier trained only on labelled data
to be sure that semi-supervised approach was really improving the accuracy.

4 Experimental Results

The Table 2 shows the results using the three datasets. WiSARD classifier
was added to the results, and SSW showed better accuracies. However, other
WiSARD results are not being showed since it is not a semi-supervised approach
and we are not comparing its results.

It is possible to see that S3VM had the best accuracy in all datasets. How-
ever, in two of these datasets S3VM’s accuracy is only 2% better than SSW. In
IMDB dataset, SSW did not show a competitive accuracy, but if we compare the
fitting time, SSW fitted in 0.2 seconds, while S3VM needed 15 seconds. EM-NB
approach showed a competitive accuracy at this dataset, but it needed more
than one minute to fit. SSW also showed the best fitting time for all datasets.
That constitutes an interesting result, since Data Stream Mining usually has
time restrictions, demanding fast responses.
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Table 2: Experimental results from 3 semi-supervised classifiers and 1 supervised
classifier.

SSW S3VM EM-NB WiSARD

OMD

Accuracy 0.6970 0.7191 0.6596 0.6866
Std 0.0171 0.0215 0.0147 0.0164
Fitting Time (s) 0.0310 0.4786 2.5181 -
Predicting Time (s) 0.0147 0.0005 0.3195 -

STS-Gold

Accuracy 0.7597 0.7781 0.7108 0.7486
Std 0.0180 0.0243 0.0199 0.0185
Fitting Time (s) 0.0291 1.7577 2.2753 -
Predicting Time (s) 0.0128 0.0005 0.2646 -

IMDB

Accuracy 0.6373 0.6821 0.6756 0.6208
Std 0.0293 0.0432 0.0426 0.0277
Fitting Time (s) 0.2146 15.1255 66.9370 -
Predicting Time (s) 0.1070 0.0046 1.7793 -

Another important point to consider is the standard deviation. S3VM and
EM-NB had 67-68% of accuracy at IMDB dataset, but the standard deviation
was 4.3%, while SSW had 2.9%. The predicting time for a SVM based approach
is fast, but considering the sum of prediction and fitting time, SSW is the faster
classifier. It is worth noting that EM-NB has no parameters to optimize, being
an interesting semi-supervised classifier if one is working under time restriction,
on a context different from Data Stream Mining.

5 Conclusion and Future Works

The present work presented a comparison between a novel self training based
semi-supervised classifier (SSW), and established semi-supervised classifiers (S3-
VM e EM-NB). SSW displayed the best fitting time and good standard devia-
tions for all tested datasets. Fitting time is a important feature in the context of
data stream mining, reinforcing the idea of using SSW. In accuracy comparison,
S3VM showed the best accuracy but it took up to 15 seconds to fit one piece of
data. SSW spent just 0.2 seconds, while still presenting a competitive accuracy.

For future works, we expect to test this novel approach in a Data Stream
Mining larger dataset. In this context, it is important to develop a robust for-
getfulness function for the classifier, in order to adapt to changes in the scenario.
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