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Abstract. LDA (Latent Dirichlet Allocation ) and NMF (Non-negative
Matrix Factorization) are two popular techniques to extract topics in a
textual document corpus. This paper shows that NMF with Kullback-
Leibler divergence approximate the LDA model under a uniform Dirichlet
prior, therefore the comparative analysis can be useful to elucidate the
implementation of variational inference algorithm for LDA.

1 Introduction

The equivalence between NMF (Non-negative Matrix Factorization) and PLSI
(Probabilistic Latent Semantic Indexing) have been discussed in several works
[1, 2]. Ding and colleagues [3] demonstrate that both NMF and PLSI opti-
mize the same objective function. Although LDA (Latent Dirichlet Allocation)
be a full Bayesian counterpart and maximum-a-posteriori view of PLSI [4], the
equivalence between NMF and LDA is not well defined. However, there are ev-
idences that such intrinsic relations also exists [5, 6]. Here, we want to clarify
these relationship by demonstrating that NMF-KL (NMF with Kullback-Leibler
divergence) approximate the LDA model, and compare the multiplicative algo-
rithm to solve NMF-KL with the variational inference algorithm for LDA.

2 NMF

The NMF method approximately factorizes a matrix of which all the elements
have non-negative values into two matrices with elements having non-negative
values. NMF for documents factorizes a document-term matrix F = (Fj,i), with
dimension D ×W, where D is the number of documents, W is the number of
words, and each entry Fj,i is the frequency of word wi in document dj , into two
matrices A and B such as F ≈ AB, where A is a D×K matrix and B is a K×W
matrix. The value of K is the number of components.

The factors matrices A and B are obtained by optimizing a cost function
which can be set by using some distance measure. There are different types of
cost functions [7]. Here, we are interested in NMF with KL-Divergence, defined
as

QKL−NMF =
∑

j,i

(

fj,i log
fj,i

(ABT )j,i
− fj,i + (ABT )j,i

)

. (1)
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The simplest technique to solve the optimization of Equation 1 is by Gradient
descent method. Gradient descent based method can be implemented by the
following “multiplicative update rules”

Aj,k = Aj,k

∑

iBk,iFj,i/(AB)j,k
∑

q Bk,q
, Bk,i = Bk,i

∑

j Aj,kVj,i/(AB)j,i
∑

p Ap,k
(2)

3 Variational Bayes Inference for LDA

LDA is a generative topic model for documents. The basic idea is that docu-
ments are represented as a random mixtures over latent topics, where each topic
is characterized by a distribution over words [8]. In a simplified LDA formula-
tion, the word probabilities are parametrized by a K × W matrix β. A topic
k (1 ≤ k ≤ K) is a discrete distribution over words with probability vector βk.
Each document dj maintains a separated distribution θj that describes the con-
tribution of each topic. Implementations of LDA inference algorithms typically
use symmetric Dirichlet prior over Θ = {θ1, . . . , θD}, in which the concentration
parameter α is fixed. A topic distribution of a document dj and a word wi is
associate in a distribution variable zj,i.

Given the parameter α and β, the joint distribution of a topic mixture Θ is
given by

p(Θ, z, w|α, β) =
∏

dj∈D
p(θj |α)

Nj
∑

n=1

p(zj,n|θj)p(w
dj
i,n|zj,n, β). (3)

where Nj is the number of tokens words in document dj .
A wide variety of approximate inference algorithms can be considered for

LDA. Here, we describe the variational inference algorithm. The main idea
behind the variational method is to use a distribution with its own parameters
replacing the posterior distribution p(θ, z, w|α, β). This variational distribution
for LDA is described as

q(θj , zj |γj , ϕj) = q(θj |γj)

N
∏

n=1

q(zj,n|θj,n), (4)

where γj and ϕj are the variational parameters respectively corresponding to
LDA real distributions θj and zj .

The value of variational parameters are chosen by a optimization procedure
that attempts to minimizing the KL-divergence between the variational distri-
bution and the true posterior p(Θ, z, w|α, β).

Actually, it is not possible to minimize the KL-divergence directly. How-
ever, bounding the log likelihood of a document, p(w|α, β), and using Jensen’s
inequality [9] it is possible to show that minimizing the KL-divergence be-
tween the variational distribution and the true posterior distribution is equiv-
alent to maximizing the Evidence Lower Bound (ELBO) with respect to vari-
ational parameters. The ELBO is defined by the difference between the varia-
tional expectation of real posterior distribution and the variational distribution,
Eq[log p(θ, z, w|α, β)]− Eq[log q(θ, z)] [8].

172

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



ELBO L can be optimized using coordinate over the variational parameters
(detailed derivation in [8]):

ϕj,i,k ∝ βk,i exp
(

Eq [log(θj,k)|γ]
)

, γj,k = α+

W
∑

i=1

Fj,iϕj,i,k, βi,wn =

D
∑

j=1

W
∑

i=1

ϕj,i,k (5)

where Fj,i is the number of words wi in document dj . The expectation in the
multinomial update can be computed as

Eq [log(θj,k)] = ψ(γj,k) − ψ

⎛

⎝

K
∑

k̂=1

γj,k̂

⎞

⎠ , (6)

where Ψ denotes the digamma function.

4 Comparing LDA and NMF

The correspondence between NMF-KL and variational inference algorithm for
LDA follows the fact that they try to minimize the divergence between word
frequency, document-topic and topic-word statistics. To clarify the relationship
between NMF and LDA, we will describe NMF-KL as a relaxation of variational
problem. The equivalence is reached when a relaxation of functions log Γ(·) and
Ψ(·) are considered in the LDA derivations.

Theorem 4.1 The objective function of NMF with KL-Divergence is a approx-
imation of ELBO L of LDA with symmetric Dirichlet priors.

Proof Initially, we expand the ELBO L by using factorization of LDA joint
distribution p (Equation 3) and the variational distribution q (Equation 4):

L � Eq [log p(Θ, z,w|α, β)] − Eq [log q(Θ, z)]

= Eq [log p(Θ|α)] + Eq [log p(z|Θ)] + Eq [log p(w|z, β)] − Eq [log q(Θ)] − Eq [log q(z)]

(Expanding each of the five terms in the bound)

=
∏

dj∈D

{[

log Γ

(

K
∑

k=1

αk

)

−
K
∑

k=1

log Γ(αk) +

K
∑

k=1

(αk − 1)

(

Ψ
(

γj,k
)− Ψ

(

K
∑

l=1

γj,l

))]

+

⎡

⎣

Nj
∑

n=1

K
∑

k=1

ϕj,n,k

(

Ψ(γj,k) − Ψ

(

K
∑

l=1

γj,k

))

⎤

⎦

+

⎡

⎣

Nj
∑

n=1

K
∑

k=1

V
∑

i=1

ϕn,iw
dj
i,n log βk,i

⎤

⎦

+

[

− log Γ

(

K
∑

k=1

γj,k

)

+
K
∑

l=1

log Γ
(

γj,l
)−

K
∑

k=1

(γj,k − 1)

(

Ψ(γj,k) − Ψ

(

K
∑

l=1

γj,l

))]

+

⎡

⎣−
Nj
∑

n=1

K
∑

k=1

ϕj,n,k logϕj,n,k

⎤

⎦

⎫

⎬

⎭

(7)

Now, we will approximate the Equation 7 by replacing the Gamma func-
tion Γ(·) and digamma function Ψ(·). The Gamma function is defined by
Γ(x) =

∫∞
0
ux−1e−udu, for x > 0. In general, Γ(x + 1) = xΓ(x), and for
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integer arguments, Γ(x + 1) = x!. For practical purposes, we can consider the
Stirlings approximation of function Γ(·):

log Γ(x) = log x! =
n
∑

i=1

log i ≈
∫ x

i=1
log (i)di ≈ x log x− x. (8)

The digamma function is defined by Ψ(x) = d
dx log Γ(x), and can be approxi-

mated by [10]
Ψ(n) ≈ log n− c, (9)

where c is a constant.
We can relate γj distribution with the vector Aj associated to document dj .

In LDA setting, we treat β as a factor matrix B. Then, considering LDA with
the fixed symmetric Dirichlet hyperparameters α, we can rewrite the ELBO
using the correspondent approximation of functions gamma, Equation 8, and
digamma, Equation 9:

L ≈
D
∏

j=1

{[ K
∑

k=1

(αk − 1)

(

log
Aj,k

∑K
l=1 Aj,l

)]

+

[ W
∑

i=1

K
∑

k=1

fj,iϕj,i,k

(

log
Aj,k

∑K
l=1 Aj,l

)]

+

[ W
∑

i=1

K
∑

k=1

Fj,iϕj,i,k

(

log
Bi,k

∑W
p=1Bp,k

)]

+

[ K
∑

k=1

(

Aj,k

(

logAj,k − 1
)− (Aj,k − 1)

(

log
Aj,k

∑K
l=1 Aj,l

))]

+

[ W
∑

i=1

K
∑

k=1

−Fj,iϕj,i,k logCej,i,k

]}

=
D
∑

j

W
∑

i

K
∑

k=1

⎛

⎜

⎝
Fj,iϕj,i,k log

Aj,k∑K
l=1

Aj,l

Bi,k∑W
p=1 Bp,k

ϕj,i,k

+(αk −Aj,k)

(

log
Aj,k

∑K
l=1 Aj,l

)

−Aj,k(logAj,k − 1)

)

(10)

Considering that the vectors Aj and Bi are normalized such that
∑K

k=1Aj,k = 1

and
∑W

p=1Bi,p = 1, and definingR(Aj,k, αk) = (αk−Aj,k)(logAj,k)−Aj,k(logAj,k−
1), we can rewrite Equation 10 and describe the following maximization problem

maxL ≈max

D
∑

j

W
∑

i

K
∑

k=1

(

Fj,iϕj,i,k log
Aj,kBi,k

ϕj,i,k
+ R(Aj,k, αk)

)

≈min
D
∑

j

W
∑

i

K
∑

k=1

(

Fj,iϕj,i,k log
ϕj,i,k

Aj,kBi,k
−R(Aj,k, αk)

)

(11)

since
∑n

i=1 ai log
ai

bi
≤ ∑n

i=1 ai log
∑n

i=1 ai∑n
i=1 bi

, for any ai and bi non-negative, and

by adding a constant value
∑

j,i Fj,i logFj,i,

maxL ≤min

D
∑

j

W
∑

i

(

Fj,i

K
∑

k=1

ϕj,i,k log

∑K
k=1 ϕj,i,k

∑K
k=1 Aj,kBi,k

−
K
∑

k=1

R(Aj,k, αk)

)
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≈min
D
∑

j

W
∑

i

(

Fj,i log
Fj,i

∑K
k=1 Aj,kBi,k

−
K
∑

k=1

R(Aj,k, αk)

)

. (12)

The last term in Equation 12 is equivalent the NMF with KL-Divergence
(Equation 1) minus the term R(Aj,k, αk). The term R(Aj,k, αk) play a impor-
tant role in LDA performance, it correspond to the priors influence and induce
sparsity over the document-topic distribution. When it is added to NMF, it can
be considered as a regularization term restricting the values of vector Aj . Then,
we can conclude that maximizing the ELBO of LDA with symmetric Dirich-
let prior is proportional to minimize the NMF with KL-Divergence objective
function disregarding the regularization term.

�

5 Comparing the updates equations

In practice, LDA and NMF use iterative algorithms to reach a feasible solu-
tion. Theoretically, these updates are based on distinct methods and different
mathematical foundation. However, as their objective functions, we can also in-
dicate similarities between their update equations. Then, in this section we will
compare the updates of NMF-KL, Equations 2, and the LDA with variational
Inference, Equations 5.

In update rule for LDA, the exponential operation over a digamma function
Ψ(x) approximate a linear function when x > 0.5 [10]. Therefore, it is possible
to approximate the value of ϕ only with linear operation

ϕj,i,k ≈ βk,i ×
γj,k

∑K
k∗=1 γj,k∗

. (13)

Thus, the value ϕj,i approximate the Hadamard product of normalized vectors
γj and βk. The resulting factor matrix A is closely related to document-topic
distribution γ, and the resulting factor matrix B is closely related to topic-word
distribution β. Thus, considering these relationships, we can approximate the
update of variational parameter ϕ as

ϕj,i,k ∝
(

Aj,kBk,i
∑K

k∗=1 Aj,k∗Bk∗,i

)

(14)

Without loss of generality, we can consider a row-wise normalization in NMF
B factor matrix, such that

∑

iBk,i = 1. Then, using Equation 14, we can rewrite
update of factor Aj,k in Equation 2, as

Aj,k =

W
∑

i=1

Fj,kϕj,i,k. (15)

Note that the updating equation of factor Aj , Equation 15, is similar to updating
equation of parameter γj without the parameter α, Equation 5.

The update equation of factor Bk,i can be rewritten considering the ϕ ap-
proximation, Equation 14, and the last value of Aj,k obtained in Equation 15

Bk,i =
1

∑

j Aj,k

∑

j Fj,kAj,kBk,i

(AB)j,k
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=

∑

j Fj,kϕj,i,k
∑

j

∑

i Fj,kϕj,k,i
. (16)

By Equation 16, we can note that the value of Bk,i is obtained by the statistics
ϕ for a specific word wi and topic k for every document dj , and normalized by
every word wi in the vocabulary. It corresponds to the topic-word distribution
for a topic k, represented by distribution βk in LDA.

6 Conclusion

In this paper, we study the relationships between NMF (with KL-Divergence
objective) and LDA (with variational inference algorithm). In particular, we
show that a) NMF-KL in fact is a special case of LDA where we assume uni-
form Dirichlet prior; and b) The NMF-KL “multiplicative updates roles” can be
approximated to the updates established by variational inference algorithm for
LDA.
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