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Abstract. We consider the problem of extending any two-variable mean
M(·, ·) to a multi-variable mean, using no other tool than M(·, ·) itself.
Pálfia proposed an iterative procedure that consists in evaluating succes-
sively two-variable means according to a cyclic pattern. We propose here a
variant of his procedure to improve the convergence speed. Our approach
consists in re-ordering the iterates after each iteration in order to speed
up the transfer of information between successive iterates.

1 Introduction

Efficient averaging tools are of major importance in many applications. For ex-
ample, a common way to denoise data coming from sensors consists in repeating
the measure and averaging the values obtained, which justifies the need to de-
velop averaging tools for many data types. Another well-known application of
mean computation is the k-means clustering algorithm.

Means have been widely studied on Euclidean spaces, but they have also
been considered on several non-Euclidean spaces. The Riemannian barycenter
(often termed Karcher mean) has for example been introduced to average data
belonging to non-Euclidean spaces endowed with a Riemannian manifold struc-
ture. On several manifolds of interest, a closed-form expression exists for the
Karcher mean of two data points (which corresponds to the midpoint of the
minimizing geodesic—when it exists—between these two data points), but com-
puting a multi-variable Karcher mean becomes more challenging, and usually
requires solving an optimization problem on the manifold. We consider here the
problem of extending the definition of two-variable means to several variables: a
multi-variable mean is computed based on successive evaluations of two-variable
means. One of the motivations behind this problem is that if this multi-variable
mean is close to the Karcher mean while being cheaper to compute, it could
replace the Karcher mean in some applications. Given a set S endowed with
a two-variable mean M(·, ·) : S × S → S, the goal is thus to extend M to a
multi-variable mean using no other tools than the M(·, ·) operator. We require
this procedure to be consistent, meaning that if S is a vector space and M(·, ·)
is the two-variable arithmetic mean, then the procedure must converge to the
multi-variable arithmetic mean.

∗This paper presents research results of the Belgian Network DYSCO (Dynamical Sys-
tems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme
initiated by the Belgian Science Policy Office.
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In [1], Pálfia proposed an iterative algorithm to extend two-variable means
to several variables. We propose here a variant of this algorithm aiming at im-
proving the convergence speed. We then use our variant to average symmetric
positive definite (SPD) matrices, and we show that it indeed achieves a better
accuracy than comparable state-of-the-art methods when run with a small num-
ber of iterations (by comparable methods, we mean methods that do not require
other tools than the ones needed by our method).

We present the algorithm proposed by Pálfia in Section 2 and we describe our
variant in Section 3. We then conclude with numerical experiments in Section 4.

2 The Cyclic mean

We recall here the procedure proposed by Pálfia [1], which we term Cyclic mean.
Let (A1, . . . , AN ) be an ordered collection of elements belonging to a given set S,
and letM(·, ·) : S×S → S be a two-variable mean. Let also π =

(
π1, π2, . . .

)
be a

sequence of permutations, i.e., πl =
(
πl(1), πl(2), . . . , πl(N)

)
is a permutation of

(1, . . . , N) for all l. The Cyclic mean Mπ(A1, . . . , AN ) associated to the sequence
of permutations π is computed according to Algorithm 1.

Algorithm 1 Cyclic mean

Data: A1, ..., AN ∈ S and π =
(
π1, π2, . . .

)
a sequence of permutations of

(1, . . . , N).
1: A0

i := Ai ∀i = 1, . . . , N ; l = 1;
2: while not converged
3: for i = 1, ..., N
4: Ali = M(Al−1

πl(i)
, Al−1

πl(i+1)
) where πl(N + 1) := πl(1)

5: l := l + 1;
6: return Al1 =: Mπ(A1, . . . , AN )

The first two iterations of this algorithm are illustrated for N = 5 and
π1, π2 = (1, . . . , N) on Fig. 1. On this figure, iterates are represented as nodes,
and two nodes are linked by an edge if their mean is evaluated during the itera-
tion.

If the mean M(A,B) corresponds to the midpoint of the geodesic between A
and B, it has been shown under some conditions on the space S that Algorithm 1
converges for all π, see [1]; that is, there exists A∗ in S such that liml→∞Ali = A∗
for all i.

It has also been pointed out that using πl = (1, . . . , N) for all l leads to a slow
convergence [2]. Different ways to choose π have been proposed to improve the
convergence speed of Algorithm 1. For example, in [2], the authors suggest to
choose a sequence of random permutations. In [3] a new permutation is built at
each iteration, based on the distance between the current iterates; this requires
a distance on S that is cheap to compute, since N(N − 1)/2 pairwise distances
need to be computed each time l is incremented.
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Fig. 1: First steps of Algorithm 1, for N = 5 and π1 = π2 = (1, . . . , N)

3 Improving the convergence speed

We build here another sequence of permutations to make the convergence faster.
In comparison with the different approaches mentioned in the previous section,
the sequence we propose is deterministic and does not require a distance defini-
tion on S. The idea is to build this sequence of permutations in order to favor
the transfer of information between the iterates, from one iteration to another.
This approach is justified by the observation, on Fig. 1, that iterate A2

1 depends
only on the inputs A0

1, A
0
2 and A0

3 (the dependence in A0
2 being considerably

greater than the one in A0
1, A

0
3). Similar observations can be made for iterates

A2
i , i = 1, . . . , 5. Actually, using this sequence of permutations, we will have

to wait until the 4th iteration to be sure that each iterate contains information
from all the inputs. This fact could however be avoided: in the case of Fig. 1,
choosing π1 = (1, 2, 3, 4, 5) and π2 = (1, 3, 5, 2, 4) would ensure that four of the
five inputs already impact the iterates A2

i , i = 1, . . . , N .
Our goal will be to find at each iteration a set of pairs of most complementary

nodes (nodes that contain mostly information related to different inputs, such
as nodes A1

1 and node A1
3 on Fig. 1) and to choose a permutation leading to the

averaging of those pairs of nodes. We expect this to improve the communication
between the iterates, hence the convergence speed.

We measure the complementarity between a pair of nodes by computing
the weights that have been given to the inputs for their computation, since
the beginning of the algorithm. The nodes with the most different weights are
the most complementary. These weights are computed and updated from one
iteration to another using the incidence matrices associated to the cycles along
which the means are computed at each iteration (such as those represented on
Fig. 1).

We define thus for each iteration l a matrix B(l) ∈ {0, 1/2}N×N , such that
B(l)(i, j) = 1/2 if πl(j) = i or πl(j+1) = i, and B(l)(i, j) = 0 otherwise. Matrix
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B(l) corresponds thus to the incidence matrix, normalized to become row- and
column-stochastic, of the cycle considered at iteration l (and corresponding to
permutation πl, see Fig. 1). Let now P (l) be the product of the transposed
matrices B(l)T , . . . , B(1)T :

P (l) = B(l)T ·B(l−1)T · · · · ·B(1)T l = 1, 2, . . .

We can see that P (l) is a row– and column–stochastic matrix in which row
i contains the weights given to the inputs A0

1, . . . , A
0
N in the computation of

iterate Ali. We can then define a complementarity matrix at each iteration l:

C(l)(i, j) =

(
N∑
k=1

(
P (l)(i, k)− P (l)(j, k)

)2)1/2

, i, j = 1, . . . , N (1)

The complementarity between two iterates Ali and Alj is thus defined as the

Euclidean distance between the corresponding rows of matrix P (l). At each
iteration l, we want to find the cycle maximizing the total complementarity
along its edges. This amounts to finding a maximum-length cycle in a complete
graph, in which the length of an edge (Ali, A

l
j) is given by C(l)(i, j). This problem

is NP-hard, but we compute an approximate solution. The whole procedure to
generate the sequence of permutation π is given in Algorithm 2.

Algorithm 2 Construction of the sequence π to give as input to Algorithm 1

1: Choose π1 := (1, . . . , N).
2: for l = 1, 2, . . . do
3: Compute matrices B(l), P (l) and C(l) as explained above.
4: Find (πl+1(1), πl+1(2)) the two nodes incident to the longest edge of the

complete graph whose edge lengths are contained in matrix C(l) (πl+1(1)
and πl+1(2) are ordered according to a lexicographic order).

5: for i = 3, . . . , N do
6: Find πl+1(i) the most distant node to πl+1(i− 1) such that

πl+1(i) 6= πl+1(i− 2), . . . , πl+1(1). If different nodes are possible, a
lexicographic order is again used.

7: return π = (π1, π2, . . . )

4 Numerical experiments

As in [1], we focus on a particular mean computation problem: the computation
of a mean of a collection of symmetric positive definite (SPD) matrices. This
task appears in various applications, e.g., in medical imaging, elasticity and
radar processing.

The Karcher mean is usually used to average SPD matrices, and is defined
as:

MK(A1, . . . , AN ) = argmin
X∈Sn+

N∑
i=1

δ(Ai, X)2, (2)
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where δ(A,B) = || log(A−1/2BA−1/2)||F is the affine-invariant Riemannian dis-
tance between A and B and Sn+ is the cone of SPD matrices. When N = 2, the
Karcher mean can be expressed explicitly as

MK(A1, A2) = A
1
2
1 (A

− 1
2

1 A2A
− 1

2
1 )

1
2A

1
2
1 ,

but no closed-form expression is known for the Karcher mean of more than two
SPD matrices, which then has to be computed by an iterative process (see [4]).

We apply the Cyclic mean to extend the definition of the two-variable Karcher
mean to more variables. If it results in a good estimate of the exact Karcher
mean, then it makes a valuable substitute for the Karcher mean in practical
applications for which the computation of the exact Karcher mean is too ex-
pensive. We therefore compare the results obtained by the Cyclic mean, using
different sequences of permutations π, to a reference value for the Karcher mean
obtained using a gradient descent, taking as initial guess the arithmetic mean
of the inputs and choosing automatically the step-length as proposed in [4]. We
measure the estimation error between a result Mπ(A1, . . . , AN ) of the extension
method and the Karcher mean MK(A1, . . . , AN ) according to:

Erel =
δ(Mπ(A1, . . . , AN ),MK(A1, . . . , AN ))

1
N

∑N
i=1 δ(Ai,MK(A1, . . . , AN ))

(3)

The error is thus normalized according to the average error that would be ob-
tained by taking as estimation for the Karcher mean one of the input matrices
themselves. We compare the performances achieved by our method (termed
Cyclic Cheap mean in the rest of this discussion) to those obtained with two
other comparable methods: the Cyclic Id mean, corresponding to the choice
πl = (1, . . . , N) for all l = 1, 2, . . . , and the Cyclic Random mean which corre-
sponds to permutations randomly chosen at each iteration. The performances
obtained are presented on Fig. 2 and 3; they have been averaged on 100 sets of
input matrices, randomly chosen from a Wishart distribution. These figures il-
lustrate the slow convergence of the Cyclic Id mean, and the fact that, in addition
to being deterministic, our approach yields a better accuracy than the two other
methods after a small number of iterations. Furthermore, if the computation
cost of the Cyclic mean is driven by the number of evaluations of two-variable
means (as it is the case when working with a few large-scale SPD matrices), then
the smaller number of iterations translates in a smaller computational cost.
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Fig. 2: Test on sets of 10 matrices of size 20×20, chosen from a Wishart distribu-
tion. The circles give the average error among the N iterates Aji , i = 1, . . . , N ,
while the squares and crosses give respectively the minimum and maximum er-
rors among those iterates.

Number of two-variable means evaluations
0 100 200 300 400 500 600 700 800 900

E
rr

or
 E

re
l

10-2

10-1

100

101

Cyclic
Cyclic_Random
Cyclic_Cheap

Fig. 3: Test on sets of 30 matrices of size 20 × 20, chosen from a Wishart
distribution.
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