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Abstract. The inter-subject variability poses a challenge in cross-subject
Brain-Computer Interface learning and classification. As a matter of fact,
in cross-subject learning not all available subjects may improve the per-
formance on a test subject. In order to address this problem we propose a
subject selection algorithm and we investigate the use of this algorithm in
the Riemannian geometry classification framework. We demonstrate that
this new approach can significantly improve cross-subject learning without
the need of any labeled data from test subjects.

1 Introduction

Predicting the stimulus from concurrent brain neuroimaging data is an approach
that can be used to understand underlying mental processes [1]. It is well known
that brain electroencephalographic (EEG) signals are subject-specific, thus brain
decoding models are traditionally designed individually: training and test data
belongs to the same subject [1]. However, collecting sufficient labeled data from
new subjects for learning a classifier is an expensive and time consuming pro-
cedure, jeopardizing the participants’ willingness to use the system [2]. Given
the abundance of labeled data from other subjects, it is tempting to use them
for training a classifier. Nevertheless, not all such training subjects may im-
prove the performance on a given test subject because of inherent inter-subject
variability [2]. To address this problem, we propose an algorithm, named Rank
Of Subjects (ROS), which ranks training subjects and selects a relevant subset.
The proposed method has the same structure as the subject selection algorithm
proposed in [1]. The relevant subjects are selected through the maximization of
the accuracy that is obtained by applying the classifier trained on data from all
subjects to the unlabeled data of the test subject.

In [3] a multi-class BCI classification framework based on Riemannian Geom-
etry has been proposed. The idea is to use appropriate forms of data covariance
matrices as features and classifying using the simple concepts of distance and cen-
ter of mass of these covariance matrices on a Riemannian manifold [4]. Thanks
to the use of an appropriate metric, this approach has displayed excellent cross-
subject generalization capabilities, besides robustness to EEG artifacts, outliers
and mislabeling [4].

In this article, we address the problem of cross-subject training without as-
suming knowledge of labels from the test subjects. The proposed method is a
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combination of previously proposed subject selection algorithms and some fun-
damental concepts of Riemannian Geometry. The performance of our algorithm
is assessed on the open ”DecMeg2014” Kaggle dataset (www.kaggle.com).

2 Rank Of Subjects

Due to inter-subject variability, the distribution of data in the training set may
be more or less different from the test subject. A cross-subject classifier may be
trained using only those training subjects that are similar to the test subject,
according to some criterion [1]. We propose to rank the training subjects and
select a subset of them according to Algorithm 1. In this algorithm, first we
construct virtual labels for the test subject by training a SVM (support-vector
machine) classifier using labeled data from all training subjects. Then, the most
relevant training subjects are selected by maximizing the accuracy obtained on
the virtual labels. Accuracy is returned by the function J(X}) when the trained
SVM classifier on X}, is applied on test data. Finally, among the available N
training subjects, we select the subset of size Ny featuring highest accuracy.

Algorithm 1 Rank Of Subjects (ROS)
Input: X} Unlabeled Signal from Target Subject
Ng
Input: {Xls} ‘1 Labeled Signal from Ny Source Subjects
s=L
Output: {Xls} £ Relevant Subjects
s=1

1: Train a model by concatenated labeled data from all source subjects
2: Generate virtual label V,, by applying trained model on target data
3: Initialize accuracy, =0, K =1, Xo = {},

4: while n < Ng do

5: Step 1 (Inclusion)

6: [xT, accuracymax] = arg max J(Xk + x)

xel{xL} e -2
7 Xpt1 =X +xt  k=k+1
8 accuarcyy = accuracymaz
9: Step 2 (Exclusion)
10: if £ > 2 then
11

[x7,accuracymax] = arg max J(Xyx — x)
Xk
12: if accuracymas > accuarcyi_—1 then
131 Xk_lzxkfx_,k?:kfl
14: accuarcyig—1 = acCuracCymas
15: go to step 2
16: else
17: go to step 1
18: end if
19: end if

20: end while

21: Best_N = arg max accuracyy
s€[1:Ng]

22: ROS = XpBest_N

23: return the first Ni subjects
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3 Spatial Filtering

In order to enhance the signal-to-noise ratio (SNR) of EEG evoked potentials,
we use a standard spatial filtering approach. Let X; € RE*N denote a trial
indexed by 4, with C' the number of channels, N the number of time samples
and y; the class label of the trial. For each class, a set of Ny, spatial filters are
built. The spatial filters are an adaptation of the well-known common spatial
pattern to evoked-potential data [6], here implemented following the winner of
the "DecMeg2014” competition [8]. The average trial of the class k is denoted
by P*) [g]:

1
") _ _
PY = > X, (1)

iez(k)

where Z(F) = {i | y; = k} is the set of indices of the trials belonging to class k.
The spatial filter w € RE*! for each class k solves the following optimization
problem:
. wIP®pm Ty

W= argmax — g (2)
where X is the matrix holding the continuous EEG recording (here we consider
the concatenation of all trials from all classes). This equation is a generalized
Rayleigh quotient, the solutions to which can be found as the eigenvector matrix
of matrix (XXT)~1(PH®P®HT). By construction, the C resulting eigenvectors
are ranked by SNR. For each class, only the first Ny;er vectors are selected.
Therefore, for each class k, the spatial filters is W(K) € RE*Nriteer  Spatial
filtering operation is simply done by linear projection of the trial by the matrix
W =[WO W W] ¢ ROXENsiwer) which is the aggregation of the
K spatial filters for each class in a single matrix, such as

Z; = W'X,. (3)

The usual covariance matrices do not hold the temporal structure of ERP tri-
als. Therefore, in order to keep all spatial and temporal information a spe-
cial estimation of the covariance matrix is used [4]. We build a new trial
Z; € R E*Nrueer)XT Yyy concatenation of the spatially filtered response ob-
tained by averaging several single trial responses of one class P*) and the spa-
tially filtered trial Z; [8]:

Zz= | wOTPO wOTP® . wOTPU), 7, }T. (4)
These ”super” trials are used to build the feature covariance matrices. The
feature covariance matrices are obtained simply by using a Sample Covariance
Matrix (SCM) estimator [7], such as

J— 1 ~,~T
5= Lz} (5)

The covariance matrices in (5) belong to the space of Symmetric Positive Definite
(SPD) matrices. The space of SPD matrices forms a Riemannian manifold of
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non-positive curvature [7]. Therefore, we can use tools issued from differential
geometry on Riemannian manifolds to manipulate them.

Riemannian Distance: For any two covariance matrix 3; and X, the
Riemannian distance according to the Riemannian metric is given by [9]

c 1/2
6(%1, Z2) = |log (B, /°Ze 52 || = [Z log” Ac] (6)
c=1

where Ac,c =1...C are the real eigenvalues of 21_1/22221_1/2 and C the num-
ber of channels. This distance is Affine-invariant [3], meaning that is invariant
with respect to similar and congruent transformation, but also to inversion.

Riemannian Mean: The Riemannian geometric mean of I covariance ma-
trices (denoted by ®&(.)), also called Fréchet or Karcher mean, is the point on
the manifold minimizing the dispersion [3], i.e.

I
6 (S1,...,%) = argmin » 6% (X, ). (7)
>

i=1

There is no closed form expression for this mean for I > 2, however a gradient
descent in the manifold can be used in order to find the solution [5].

Algorithm 2 Rank Of Subjects and Minimum Distance to Riemannian Mean (ROS+MDRM)
Input: X} Unlabeled Signal from Target Subject

Ns
Input: {Xls} ” Labeled Signal from N Source Subjects

s=1

Input: Source Subjects who are more relevant to Target Subject as selected by the ROS algorithm
Output: The label of target subject

: Train a classifier on labeled data from relevant source subjects

: Initialize target labels by applying the designed classifier to Target Subject

: while y; (n41) = Yi,n do

Train spatial filters given the labels y;,, of the trial 7 at the iteration n.

Apply the spatial filters on the trials

Estimate special form covariance matrices X;

Obtain K mean covariance matrix for each class: Eg), ey 2((,;() , Eq.(7)
Classify each trial according to the Riemannian distance

y = argmin 6R(E(J;), 3i) , Eq.(6)
k

© XTI WO

: end while
: return y

==
= o

4 Results

We evaluate the proposed method on the magnetoencephalography (MEG) data
set used in the "DecMeg2014” Kaggle competition. This dataset is comprised
of 16 subjects. During the experiment participants observed two visual stimuli:
face and scrambled face. Approximately 580-590 trials have been recorded for
each subject. The duration of each trial was 1.5 seconds, with the stimulus pre-
sented at time 0.5 second. The class label was either Face (class 1) or Scramble
Face (class 0).

As pre-processing, the original MEG recording (306 channels) has been down-
sampled at 250Hz and high-pass filtered at 1Hz. We use the SV M9t toolbox
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for training SVM classifier and constructing virtual test labels. The standard
SVM uses the default parameter tuning. In the ROS algorithm, we select the
eight most relevant subjects (half of available training subjects). We compare
result of standard SVM classifier with ROS and without ROS. The performance
of the proposed method is evaluated by means of percent classification accuracy
on the test data using a leave-one-out procedure (LOO).

The first column of Table 1 reports the accuracy of a standard SVM classifier.
In this method we pool all training data from all training subjects and train a
SVM classifier on such labeled data and then apply on test data. This is a
generic classifier and it achieves an accuracy of 69.85 % . For the second column
(SVM+ROS), we train SVM classifier on training data from a selected subset
of training subjects as per the ROS algorithm; this generic classifier reaches
71.47% accuracy. In the third column (MDRM), for each class of test data, a
set of four spatial filters are built as per Eq.(1), where in the equation P®) g
constructed based on virtual labels. We estimate covariance matrices by Eq.(5).
Each trial is classified according to the Riemannian distance from two mean
covariance matrices for each class Eg)) and Eg). This procedure is iterated until
convergence. Results of the combination ROS+MDRM are provided in the last
column. The combination ROS+MDRM achieves a much higher performance
(77.94%) as compared to the other methods. The performance improvement is
2.14% compared to MDRM [8]. The results show 10 % improvement compared
to [10] which used another cross-subject transfer learning approach to classify
this same dataset.

| Subject [ SVM | SVM+ROS | MDRM [8] | ROS+MDRM |
1 77.27 79.28 64.3 84.67
2 68.94 70.94 72.7 74.74
3 62.46 62.93 63.3 60.72
4 79.63 85.11 86.5 91.24
5 67.06 70.11 74.2 76.11
6 66.50 66.81 73.8 69.38
7 7177 78.89 79.9 88.60
8 67.74 69.24 76.6 78.20
9 76.09 74.73 79.6 86.19
10 68.81 70.32 78.9 75.25
11 72.47 73.98 59.9 72.62
12 74.23 73.68 83.7 79.18
13 68.62 73.28 73.4 81.95
14 69.59 66.81 87.0 76.68
15 68.62 72.20 87.0 81.72
16 58.14 61.17 72.5 69.83

Mean +(std) [ 69.85 £ (5.5) [ 71.47 £ (6.32) | 75.8 £ (8.3) [ 77.94+ (7.84) |

Table 1: Classification accuracy in LOO Cross-Validation
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5 Conclusion

In this paper we have proposed a method for brain decoding with cross-subject
learning. It is well-known that EEG and MEG signals are very specific to each
subject. As a result, establishing a generic model featuring high classification
performance is a very difficult task due to large inter-variability between subjects.
We proposed a ROS algorithm for ranking automatically the relevant training
subjects and selecting the best training subset. By combination of this method
with Riemannian Geometry we have simply classified each trial based on distance
of each trial from the two class-related mean covariance matrices. By evaluating
the proposed algorithm on the MEG dataset of the ”DecMeg2014” competition
we have shown that this approach can outperform other methods. In future
works the methods will be tested on other datasets and we will study how the
mismatching between training and test subjects can be reduced.
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