
Semantic Role Labelling for Robot Instructions
using Echo State Networks

Johannes Twiefel and Xavier Hinaut and Stefan Wermter ∗

Universität Hamburg - Department Informatik
Vogt-Kölln-Straße 30, D-22527 Hamburg - Germany

https://www.informatik.uni-hamburg.de/wtm/

Abstract. To control a robot in a real-world robot scenario, a real-time
parser is needed to create semantic representations from natural language
which can be interpreted. The parser should be able to create the hi-
erarchical tree-like representations without consulting external systems to
show its learning capabilities. We propose an efficient Echo State Network-
based parser for robotic commands and only relies on the training data.
The system generates a single semantic tree structure in real-time which
can be executed by a robot arm manipulating objects. Four of six other
approaches, which in most cases generate multiple trees and select one of
them as the solution, were outperformed with 64.2% tree accuracy on dif-
ficult unseen natural language (74.1% under best conditions) on the same
dataset.

1 Background and Related Work

1.1 Method: Echo State Networks

ESNs belong to the domain of reservoir computing and were e.g. described by
Jaeger [1]. The main part of an ESN is called a reservoir, which is a recurrent
neural network consisting of randomly and sparsely or (in our case) fully con-
nected neurons. A special property of ESNs compared to other recurrent neural
networks is the learning principle which leaves the input layer and the reservoir
untrained. Only the output layer (readout), which is connected to the reservoir,
is trained on reservoir states usually by Linear or Ridge Regression but it can
also be trained online using Least Mean Square [2]. To be able to balance the
influence of new inputs and past states of the network, we used leaky integrator
neurons in the reservoir update equation [3]:

x(n+ 1) = (1− α)x(n) + αf(Wx(n) +W inu(n+ 1) (1)

with x(n) the current state; W the weights inside the reservoir; W in the weights
of the input layer; u(n + 1) the next input; f the activation function (tanh);
α the leak rate. The outputs of an ESN are given by y(n), the output weights
W out are calculated using Linear Regression

y(n) = W outz(n);W out = (XTX)∗XTY (2)

∗This research was partially supported by a Marie Curie Intra European Fellowship within
the 7th European Community Framework Programme: EchoRob project (PIEF-GA-2013-
627156).

695

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

with W out the weights of the output layer; z(n) given by [x(n); 1]; X the states
of the reservoir concatenated with a bias ([x(n); 1]); Y the desired output of the
system; (XTX)∗ the Moore-Penrose-Pseudoinverse of (XTX).

1.2 Task: Supervised Semantic Parsing of Robotic Spatial Com-
mands

The SemEval-2014 Task 6 [4] was a contest in 2014 to provide parsing systems for
a robotic spatial command dataset to extract semantic information in predefined
structures. It was based on the Train Robots [5] dataset which consists of robot
instructions and their corresponding semantic representation. Instructions were
produced by internet users and are often grammatically incorrect. Whereas the
whole treebank consists of around 10,000 sentences, for SemEval-2014 Task 6,
a subset of 3,409 sentences from the treebank was chosen taking the first 2,500
sentences as training data, and the remaining 909 sentences as testing data.
The dataset contains linguistically rich sentences, including ellipses, anaphoric
references, multi-word spatial expressions and lexical disambiguation. The com-
mands are related to a simulated environment containing an 8 x 8 board, on
which differently colored objects like boxes and pyramids are placed (see Fig.
1). A robot arm is able to grasp objects from the board and move them to
different positions. The sentences of the dataset contain a visual description of
the scene before (left) and after (right) performing the desired action. For each
sentence a semantic annotation exists which is described by the Robot Control
Language (RCL). One challenging example sentence would be ”Pick up the blue
block from the top of the green block and put it down on the blue block which lies
next to another green block.”

event

destination

spatial-relation

entity

type

brick

color

blue

relation

of thetopon

entity

type

brick

color

red

action

move the

Fig. 1: An example for a board scene before (left board) and after (right board)
the command Move the red brick on top of the blue brick and the corresponding
parse tree.

1.3 Related Reference Systems

UW-MRS: Packard [6] developed a parser that uses the English Resource
Grammar (ERG) as first-phase processing and employs a modified Berkeley

696

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Parser as a second-phase backup. The ERG produces Minimal Recursion Se-
mantics (MRS) as output and converts these to RCL statements. If the produced
RCL statement is invalid, the Berkeley Parser creates hypothetical trees.
RoBox: The parser introduced by Evang and Bos [7] employs Combinatory
Categorial Grammar (CCG) as a representation instead of RCL trees for train-
ing. To choose the best hypothetic tree, a structured perceptron is performing
a post-processing step.
Tag&Parse: The Tag&Parse approach [8] consists of an independent tagger
creating part-of-speech tags and performs chunking and chunk labelling. Then
a constituency parser is used to generate RCL trees. To resolve anaphors, a
maximum entropy model is used to generate tree hypotheses. Finally, the most
probable tree is selected by the system.
KUL-Eval: Mattelaer et al. [9] developed a system using RCL statements as
λ-expressions together with a probabilistic CCG.
Shrdlite: Shrdlite, a model of Ljunglöf [10] consists of a hand-written ambigu-
ous grammar to generate multiple trees. The system selects the tree containing
the minimum number of nodes as the best hypothetic tree.
UWM: The system developed by Kate [11] consists of the KRISP parser which
uses a Support Vector Machine and a handwritten context-free grammar.

2 Approach

The aim of the developed approach is to provide a neural model for processing
commands directed to a robot and create semantic representations that can be
interpreted by that robot to perform the action contained in a given command.
The developed model is inspired by the model of Hinaut and Dominey [12, 13],
which is able to learn predicates from sentence structures consisting of closed
class word (like the, and, ...) and place-holder open-class words. As input, our
model receives tagged and labelled chunks (TLCs) (e.g. action: take). The
TLCs are fed as a sequence to the network. At each timestep, only two neurons
are active, one specifying the current tag (e.g. action), the other one setting
the current label (e.g. take). For training, the reservoir state at the end of the
sequence is collected for each input sequence and a Linear Regression is used to
calculate the weights for the readout. The output nodes are used to generate RCL
trees. Each word can have multiple outputs active. The possible outputs are
spatial-relation (4), sequence (1), destination (1), entity (6), measure (1), event
(2), type-reference (2*6) which are in total 27 for each word and at maximum
1080 for the longest assumable sentence (40 words). An output will be considered
as active if its response is greater than 0.5. There are multiple outputs for several
RCL elements to be able to distinguish elements of the same type. The inputs
are generated by a second order Hidden Markov Model (HMM) [14], which takes
words as input and generates Inside Outside Beginning 2 (IOB2) representations
[15]. The same model is used to generate chunk labels from words. Fig. 2 shows
an example of processing a very simple sentence.

697

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Move the red brick on top of the blue brick

B-act B-col B-type B-rel I-rel I-rel B-col B-typeO O

move abovered cube blue cube

action
move

color
red

type
cube

relation
above

color
blue

type
cube

ev_0 ev_0 ev_0 ev_0 ev_0 ev_0

ent_0 ent_0 sp_0 ent_1 ent_1

HMM

1

2

3

4

6

5

O Oabove above

event

entity spatial-relation entity

g
re

en
re

d
m

o
v
e

ta
k
e

in
d

co
l

a
ct re
l

ca
r

 Outputs:
Word 1 Word 2 Word 3 ...

ESN

Fig. 2: Processing of a simple example sentence. First, IOB2 tags are gen-
erated (e.g. move → B-action) from the input sequence ¬. Then the HMM
creates chunk labels ® for words ¬ (e.g. on → above). Afterwards the identified
chunks are merged (e.g. B-rel I-rel I-rel → relation) and are paired with the
corresponding chunk tags ® to a TLC sequence ¯. The TLC sequence is fed
to our ESN-based model which generates outputs for each words °. The active
outputs ± are merged (e.g. ent 0̇ ... ent 0̇ → entity) and ordered in a hierarchy
derived from the training data (e.g. event over entity). From this hierarchy, a
tree representation can be derived (event as root, entity as child of event...; see
Fig. 1).

3 Experiments and Results

The training dataset [5] consists of 2,500 sentences and 2,500 RCL trees repre-
senting their semantic content, while the test set contains 909 sentences and 909
RCL representations. To measure the performance of our system, we consider
the metric defined in SemEval-2014 Task 6 [4], which takes a string representa-
tion of the generated RCL tree and compares it directly to the reference tree.
This way, even trees containing small errors are considered as classified wrongly
which makes it a hard metric. In SemEval-2014 Task 6, the performance of the
different systems (see Sec. 1.3) is measured for performing the task with and
without the assistance of a planner, which is able to validate if a tree is correct
for a given scene. As our system works without consulting a planner, we com-
pare to the performance of the other methods measured without the planner.
The results are shown in Table 1. To find out the best hyper-parameters for our
system, we performed a 10-fold cross-validation on the training dataset explor-
ing the parameters leak rate (from 0.1 to 0.9 with step size 0.1), spectral radius
(from 0.25 to 10 with step size 0.25) for 10 different reservoir instance with a
size of 500. The grid-search led to the best choice of hyper-parameters (leak rate
= 0.3, spectral radius = 6) and was performed relatively fast (18 hours) using
GPU processing to parallelize the computations. We fixed the reservoir size to
500 to increase the computation time, as Lukoševičius et al. [16] claimed that
hyper-parameters scale for different reservoir sizes on the same task. To show
the behaviour of the system with a reservoir network size, we measured the test

698

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

error for different reservoir sizes up to 20,000 neurons (see Fig. 3). To train
the 2,500 sentences, the system just needs several seconds for reservoir sizes up
to 5,000 neurons, for 20,000 it already takes 5 minutes, while testing a single
sentence is possible in real-time even with a reservoir of 20,000 neurons.

Approach Accuracy

UW-MRS (90.50)
RoBox 79.21
Tag& Parse 60.84
KUL-Eval 57.76
Shrdlite 51.50
UWM 45.98
Our Approach 64.2
Our Approach (perfect TLCs) 74.1

Table 1: Performance on
SemEval-2014 Task 6 [4] data.

100 200 500 1000 2000 5000 1000020000
Reservoir Size

40

45

50

55

60

65

70

75

R
C

L
T

re
e

A
cc

ur
ac

y

perfect chunks
chunks from HMM

Fig. 3: Performance for different
reservoir sizes.

4 Discussion

Compared to the other systems (see Sec. 1.3), which usually generate multiple
possible trees and select one using a post-processor, our system only generates
one tree as output, which leads to a constant computation time (O(1)) for a
sentence with a given size, compared to O(n3) [17] for the CKY-based RoBox
parser. Our ESN-based model is trainable in an efficient and fast way, as only the
output weights have to be calculated only at the last time-step. Even scaling up
the reservoir size up to 20,000 neurons (which leads to an increased performance
(see Fig. 3)) does not prevent the system to work in real-time. A larger reservoir
would be possible but is computationally too expensive, as with modern GPUs
(approx. 5,000 cores) not all computations can be parallelized and a lot of data
shifting has to be performed, which slows down the training process. The results
in Table 1 show that the system outperforms four of the six reference systems.
The best system (UW-MRS) is based on the English Resource Grammar which
is an external expert, while our system only uses the training data as input. The
system would be even better if the TLCs generated by the HMM were correct
(64.2%→ 74.1% accuracy). Because of this fact, we plan to develop an improved
chunker based on ESNs. After inspecting the neural outputs of the system, we
identified that often only one or few labels are incorrect, and that there are
low activities for different concurrent outputs (e.g. spatial-relation and entity),
which leads to the hypothesis that the system was trained with ambiguous data
and provides weak responses to the different possible outputs at the same time.
We plan to introduce a post-processing step which disambiguates these outputs.
By solving this systematic error, the system could outperform the other methods
which do not use an external expert. Due to the fact that the system is running
in real-time, we are also planning to bring the system to a real-world scenario by

699

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

connecting it to an existing speech recognition environment [18] and to employ
the outputs of the system to control a real-world robot like in [13].

References

[1] H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Informa-
tion Technology GMD Technical Report, 148:34, 2001.

[2] X. Hinaut and S. Wermter. An incremental approach to language acquisition: Thematic
role assignment with echo state networks. In ICANN 2014, pages 33–40. Springer, 2014.

[3] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and applications
of echo state networks with leaky-integrator neurons. Neural Networks, 20(3):335–352,
2007.

[4] K. Dukes. Semeval-2014 task 6: Supervised semantic parsing of robotic spatial commands.
SemEval 2014, page 45, 2014.

[5] K. Dukes. Train robots: A dataset for natural language human-robot spatial interaction
through verbal commands. In ICSR. Embodied Communication of Goals and Intentions
Workshop, Bristol, United Kingdom, 2013.

[6] W. Packard. UW-MRS: leveraging a deep grammar for robotic spatial commands. Se-
mEval 2014, page 812, 2014.

[7] K. Evang and J. Bos. Robox: CCG with structured perceptron for supervised semantic
parsing of robotic spatial commands. SemEval 2014, page 482, 2014.

[8] S. Stoyanchev, H. Jung, J. Chen, and S. Bangalore. AT&T: The tag&parse approach to
semantic parsing of robot spatial commands. SemEval 2014, page 109, 2014.

[9] W. Mattelaer, M. Verbeke, and D. Nitti. Kul-eval: A combinatory categorial grammar ap-
proach for improving semantic parsing of robot commands using spatial context. SemEval
2014, page 385, 2014.

[10] P. Ljunglöf. Shrdlite: Semantic parsing using a handmade grammar. SemEval 2014, page
556, 2014.

[11] R. J. Kate. UWM: Applying an existing trainable semantic parser to parse robotic spatial
commands. SemEval 2014, page 823, 2014.

[12] X. Hinaut and P. F. Dominey. Real-time parallel processing of grammatical structure in
the fronto-striatal system: a recurrent network simulation study using reservoir comput-
ing. PloS one, 8(2):e52946, 2013.

[13] X. Hinaut, M. Petit, G. Pointeau, and P. F. Dominey. Exploring the acquisition and
production of grammatical constructions through human-robot interaction with echo state
networks. Frontiers in Neurorobotics, 8, 2014.

[14] K. Dukes. Contextual Semantic Parsing using Crowdsourced Spatial Descriptions.
arXiv:1405.0145 [cs], May 2014. arXiv: 1405.0145.

[15] E. F. Tjong Kim Sang and S. Buchholz. Introduction to the conll-2000 shared task:
Chunking. In Proceedings of the 2nd workshop on Learning language in logic and the 4th
CoNLL-Volume 7, pages 127–132. Association for Computational Linguistics, 2000.

[16] M. Lukoševičius. A practical guide to applying echo state networks. In Neural Networks:
Tricks of the Trade, pages 659–686. Springer, 2012.

[17] X. Song, S. Ding, and C. Lin. Better binarization for the cky parsing. In EMNLP 2008.
Hawaii, USA, pages 167–176. Association for Computational Linguistics, 2008.

[18] J. Twiefel, T. Baumann, S. Heinrich, and S. Wermter. Improving domain-independent
cloud-based speech recognition with domain-dependent phonetic post-processing. In
Twenty-Eighth AAAI. Québec City, Canada, pages 1529–1535, 2014.

700

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

