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Abstract. To control a robot in a real-world robot scenario, a real-time
parser is needed to create semantic representations from natural language
which can be interpreted. The parser should be able to create the hi-
erarchical tree-like representations without consulting external systems to
show its learning capabilities. We propose an efficient Echo State Network-
based parser for robotic commands and only relies on the training data.
The system generates a single semantic tree structure in real-time which
can be executed by a robot arm manipulating objects. Four of six other
approaches, which in most cases generate multiple trees and select one of
them as the solution, were outperformed with 64.2% tree accuracy on dif-
ficult unseen natural language (74.1% under best conditions) on the same
dataset.

1 Background and Related Work

1.1 Method: Echo State Networks

ESNs belong to the domain of reservoir computing and were e.g. described by
Jaeger [1]. The main part of an ESN is called a reservoir, which is a recurrent
neural network consisting of randomly and sparsely or (in our case) fully con-
nected neurons. A special property of ESNs compared to other recurrent neural
networks is the learning principle which leaves the input layer and the reservoir
untrained. Only the output layer (readout), which is connected to the reservoir,
is trained on reservoir states usually by Linear or Ridge Regression but it can
also be trained online using Least Mean Square [2]. To be able to balance the
influence of new inputs and past states of the network, we used leaky integrator
neurons in the reservoir update equation [3]:

x(n+ 1) = (1− α)x(n) + αf(Wx(n) +W inu(n+ 1) (1)

with x(n) the current state; W the weights inside the reservoir; W in the weights
of the input layer; u(n + 1) the next input; f the activation function (tanh);
α the leak rate. The outputs of an ESN are given by y(n), the output weights
W out are calculated using Linear Regression

y(n) = W outz(n);W out = (XTX)∗XTY (2)

∗This research was partially supported by a Marie Curie Intra European Fellowship within
the 7th European Community Framework Programme: EchoRob project (PIEF-GA-2013-
627156).
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with W out the weights of the output layer; z(n) given by [x(n); 1]; X the states
of the reservoir concatenated with a bias ([x(n); 1]); Y the desired output of the
system; (XTX)∗ the Moore-Penrose-Pseudoinverse of (XTX).

1.2 Task: Supervised Semantic Parsing of Robotic Spatial Com-
mands

The SemEval-2014 Task 6 [4] was a contest in 2014 to provide parsing systems for
a robotic spatial command dataset to extract semantic information in predefined
structures. It was based on the Train Robots [5] dataset which consists of robot
instructions and their corresponding semantic representation. Instructions were
produced by internet users and are often grammatically incorrect. Whereas the
whole treebank consists of around 10,000 sentences, for SemEval-2014 Task 6,
a subset of 3,409 sentences from the treebank was chosen taking the first 2,500
sentences as training data, and the remaining 909 sentences as testing data.
The dataset contains linguistically rich sentences, including ellipses, anaphoric
references, multi-word spatial expressions and lexical disambiguation. The com-
mands are related to a simulated environment containing an 8 x 8 board, on
which differently colored objects like boxes and pyramids are placed (see Fig.
1). A robot arm is able to grasp objects from the board and move them to
different positions. The sentences of the dataset contain a visual description of
the scene before (left) and after (right) performing the desired action. For each
sentence a semantic annotation exists which is described by the Robot Control
Language (RCL). One challenging example sentence would be ”Pick up the blue
block from the top of the green block and put it down on the blue block which lies
next to another green block.”
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Fig. 1: An example for a board scene before (left board) and after (right board)
the command Move the red brick on top of the blue brick and the corresponding
parse tree.

1.3 Related Reference Systems

UW-MRS: Packard [6] developed a parser that uses the English Resource
Grammar (ERG) as first-phase processing and employs a modified Berkeley
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Parser as a second-phase backup. The ERG produces Minimal Recursion Se-
mantics (MRS) as output and converts these to RCL statements. If the produced
RCL statement is invalid, the Berkeley Parser creates hypothetical trees.
RoBox: The parser introduced by Evang and Bos [7] employs Combinatory
Categorial Grammar (CCG) as a representation instead of RCL trees for train-
ing. To choose the best hypothetic tree, a structured perceptron is performing
a post-processing step.
Tag&Parse: The Tag&Parse approach [8] consists of an independent tagger
creating part-of-speech tags and performs chunking and chunk labelling. Then
a constituency parser is used to generate RCL trees. To resolve anaphors, a
maximum entropy model is used to generate tree hypotheses. Finally, the most
probable tree is selected by the system.
KUL-Eval: Mattelaer et al. [9] developed a system using RCL statements as
λ-expressions together with a probabilistic CCG.
Shrdlite: Shrdlite, a model of Ljunglöf [10] consists of a hand-written ambigu-
ous grammar to generate multiple trees. The system selects the tree containing
the minimum number of nodes as the best hypothetic tree.
UWM: The system developed by Kate [11] consists of the KRISP parser which
uses a Support Vector Machine and a handwritten context-free grammar.

2 Approach

The aim of the developed approach is to provide a neural model for processing
commands directed to a robot and create semantic representations that can be
interpreted by that robot to perform the action contained in a given command.
The developed model is inspired by the model of Hinaut and Dominey [12, 13],
which is able to learn predicates from sentence structures consisting of closed
class word (like the, and, ...) and place-holder open-class words. As input, our
model receives tagged and labelled chunks (TLCs) (e.g. action: take). The
TLCs are fed as a sequence to the network. At each timestep, only two neurons
are active, one specifying the current tag (e.g. action), the other one setting
the current label (e.g. take). For training, the reservoir state at the end of the
sequence is collected for each input sequence and a Linear Regression is used to
calculate the weights for the readout. The output nodes are used to generate RCL
trees. Each word can have multiple outputs active. The possible outputs are
spatial-relation (4), sequence (1), destination (1), entity (6), measure (1), event
(2), type-reference (2*6) which are in total 27 for each word and at maximum
1080 for the longest assumable sentence (40 words). An output will be considered
as active if its response is greater than 0.5. There are multiple outputs for several
RCL elements to be able to distinguish elements of the same type. The inputs
are generated by a second order Hidden Markov Model (HMM) [14], which takes
words as input and generates Inside Outside Beginning 2 (IOB2) representations
[15]. The same model is used to generate chunk labels from words. Fig. 2 shows
an example of processing a very simple sentence.
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Fig. 2: Processing of a simple example sentence. First, IOB2 tags  are gen-
erated (e.g. move → B-action) from the input sequence ¬. Then the HMM
creates chunk labels ® for words ¬ (e.g. on → above). Afterwards the identified
chunks  are merged (e.g. B-rel I-rel I-rel → relation) and are paired with the
corresponding chunk tags ® to a TLC sequence ¯. The TLC sequence is fed
to our ESN-based model which generates outputs for each words °. The active
outputs ± are merged (e.g. ent 0̇ ... ent 0̇ → entity) and ordered in a hierarchy
derived from the training data (e.g. event over entity). From this hierarchy, a
tree representation can be derived (event as root, entity as child of event...; see
Fig. 1).

3 Experiments and Results

The training dataset [5] consists of 2,500 sentences and 2,500 RCL trees repre-
senting their semantic content, while the test set contains 909 sentences and 909
RCL representations. To measure the performance of our system, we consider
the metric defined in SemEval-2014 Task 6 [4], which takes a string representa-
tion of the generated RCL tree and compares it directly to the reference tree.
This way, even trees containing small errors are considered as classified wrongly
which makes it a hard metric. In SemEval-2014 Task 6, the performance of the
different systems (see Sec. 1.3) is measured for performing the task with and
without the assistance of a planner, which is able to validate if a tree is correct
for a given scene. As our system works without consulting a planner, we com-
pare to the performance of the other methods measured without the planner.
The results are shown in Table 1. To find out the best hyper-parameters for our
system, we performed a 10-fold cross-validation on the training dataset explor-
ing the parameters leak rate (from 0.1 to 0.9 with step size 0.1), spectral radius
(from 0.25 to 10 with step size 0.25) for 10 different reservoir instance with a
size of 500. The grid-search led to the best choice of hyper-parameters (leak rate
= 0.3, spectral radius = 6) and was performed relatively fast (18 hours) using
GPU processing to parallelize the computations. We fixed the reservoir size to
500 to increase the computation time, as Lukoševičius et al. [16] claimed that
hyper-parameters scale for different reservoir sizes on the same task. To show
the behaviour of the system with a reservoir network size, we measured the test
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error for different reservoir sizes up to 20,000 neurons (see Fig. 3). To train
the 2,500 sentences, the system just needs several seconds for reservoir sizes up
to 5,000 neurons, for 20,000 it already takes 5 minutes, while testing a single
sentence is possible in real-time even with a reservoir of 20,000 neurons.

Approach Accuracy

UW-MRS (90.50)
RoBox 79.21
Tag& Parse 60.84
KUL-Eval 57.76
Shrdlite 51.50
UWM 45.98
Our Approach 64.2
Our Approach (perfect TLCs) 74.1

Table 1: Performance on
SemEval-2014 Task 6 [4] data.
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Fig. 3: Performance for different
reservoir sizes.

4 Discussion

Compared to the other systems (see Sec. 1.3), which usually generate multiple
possible trees and select one using a post-processor, our system only generates
one tree as output, which leads to a constant computation time (O(1)) for a
sentence with a given size, compared to O(n3) [17] for the CKY-based RoBox
parser. Our ESN-based model is trainable in an efficient and fast way, as only the
output weights have to be calculated only at the last time-step. Even scaling up
the reservoir size up to 20,000 neurons (which leads to an increased performance
(see Fig. 3)) does not prevent the system to work in real-time. A larger reservoir
would be possible but is computationally too expensive, as with modern GPUs
(approx. 5,000 cores) not all computations can be parallelized and a lot of data
shifting has to be performed, which slows down the training process. The results
in Table 1 show that the system outperforms four of the six reference systems.
The best system (UW-MRS) is based on the English Resource Grammar which
is an external expert, while our system only uses the training data as input. The
system would be even better if the TLCs generated by the HMM were correct
(64.2%→ 74.1% accuracy). Because of this fact, we plan to develop an improved
chunker based on ESNs. After inspecting the neural outputs of the system, we
identified that often only one or few labels are incorrect, and that there are
low activities for different concurrent outputs (e.g. spatial-relation and entity),
which leads to the hypothesis that the system was trained with ambiguous data
and provides weak responses to the different possible outputs at the same time.
We plan to introduce a post-processing step which disambiguates these outputs.
By solving this systematic error, the system could outperform the other methods
which do not use an external expert. Due to the fact that the system is running
in real-time, we are also planning to bring the system to a real-world scenario by
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connecting it to an existing speech recognition environment [18] and to employ
the outputs of the system to control a real-world robot like in [13].
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