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Abstract. We consider the modelling of parameterized processes, where
the goal is to model the process for new parameter value combinations. We
compare the classical regression approach to a modular approach based on
regression in the model space: First, for each process parametrization a
model is learned. Second, a mapping from process parameters to model
parameters is learned. We evaluate both approaches on a real and a syn-
thetic dataset and show the advantages of the regression in the model
space.

1 Introduction

Many processes in nature and technology depend on the environment or the
context. For example, a chemical process may dependent on the temperature and
pressure and a mechanical process may depend on the applied force and material
properties. Models of such processes are important in many applications, e.g.
for optimization of production processes.

We distinguish between process parameters, which do not change during the
process, e.g. temperature and pressure in the before mentioned examples, and
the process inputs, e.g. time. The constancy of the process parameters during
the process separates our definition from the contextual features defined in [4],
where contextual, primary and irrelevant features were differentiated.

The classical, data-driven modelling approach for parameterized processes is
to train a regressor using the combination of process parameters and process
inputs. This leads to an increased training data demand to cover the high-
dimensional input space spanned by the combination of process parameters and
process inputs as independent variables for the regression. In contrast to this
monolithic approach, we propose a novel modular approach, where we separate
the learning of process parameters and process inputs utilizing learning in the
model space [5]. First, for each process parameter combination, we learn a model
for the process given the process input, which yields learned model parameters.
Second, we learn a mapping from process parameters to model parameters -
a map from the process parameter space to the space of process models. By
decoupling the learning of process parameters from the process inputs, the di-
mensionality of the input data is smaller and thus better generalization from
fewer samples can be achieved.

∗This work is funded by the German Federal Ministry of Education and Research (BMBF)
within the Leading-Edge Cluster Competition ”it’s OWL” (intelligent technical systems Os-
tWestfalenLippe). The authors thank Hesse GmbH [1] and Infineon Technologies AG [2] for
permission to use the data from the project ’Intelligent Copper Bonding’ (InCuB) [3].
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Learning in the model space was previously mainly applied to time series clas-
sification [5, 6]. Our contribution is the extension of the approach to regression
in the model space of process models. A similar approach was used in robotics
for learning of parameterizable skills based on dynamic motion primitives [7, 8].
Another related approach are context-dependent neural nets [9].

2 Model Space Regression (MSR)

For regression we use Extreme Learning Machines (ELM, [10]). ELMs are
feed-forward neural networks with three layers: Input layer x ∈ R

I , a layer
h ∈ R

N with N hidden neurons, and output layer y ∈ R
O. The output is

computed by y(x) = W outh(W inx + b), where W in ∈ R
N×I is the random

input weight matrix, h(a) = (1 + e−a)−1 the logistic function applied element-
wise to the N neuron inputs, b ∈ R

N the neuron biases, and W out ∈ R
O×N the

readout weight matrix. The readout weights are learned with ridge regression:
W out = argminW (‖H(X)W T − T ‖2 + α‖W ‖2), where X are the collected in-
puts, H(X) the collected neuron activations for X, T the target values and α
the regularization strength.
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Fig. 1: Model Space Regression (MSR) with ELMs.

Fig. 1 sketches the MSR approach during exploitation. The specialist model
ELMS is responsible for modelling the process for a given process parameter
value combination pi. The generalist model ELMG parameterizes the specialist
model by computing readout weights W out

Si
for a given pi. Training of the MSR

approach consists of two phases (cf. Algorithm MSR-ELM): In the first phase,
for each process parameter value combination pi, we train a specialist model
ELMSi

using only the process input and process output, but not the process
parameters pi. In the second phase, we train the generalist model ELMG to
predict the readout weights W out

S (p) of the specialist model ELMS from the
process parameters p. The readout weights W out

S form the model space of
process models, where the generalization over the process parameters takes place.

ELMs are especially suited as specialist process models, because only their
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readout weights are learned and their solution via linear regression is unique for
given input weights. Interestingly, the resulting model space is ’flat’: The differ-
ence between models is approximately equal to the Euclidean distance between
the model parameters [11]. This ’flatness’ of the model space allows for effective
generalization.

Algorithm MSR-ELM

1: Inputs:
Set{pi}i=1,...,M of process parameter combinations
Matrices Xi ∈ R

Ti×I , Yi ∈ R
Ti×O of process input and output samples

2: Initialize:
Random input weights and biases of specialist ELMS and generalist
ELMG models with NS and NG hidden neurons

3: for all process parameter combinations i do
4: Train ELMSi

by W out
Si

=argminW (‖H(Xi)W
T−Yi‖2+αS‖W ‖2)

5: Store specialist readout matrix W out
Si

in vectorized format ωi ∈ R
NS ·O

6: end for
7: Concatenate all (pi,ωi) to P and Ω
8: Train ELMG by W out

G = argminW (‖H(P )W T−Ω‖2+αG‖W ‖2)

3 Experiments

We evaluate MSR and a monolithic ELM on a synthetic and a real-world dataset.
The monolithic ELM is trained with process parameters and process inputs fused
together. We use leave-one-out-cross-validation (LOOCV), where in each fold
a process parameter combination is left out. We report mean average errors
(MAE) E = 1

M

∑M
m=1

1
Ti

∑Ti

t=1 |ym,t − ŷm,t|, where M is the number of process
parameter value combinations and Ti the number of samples available per process
parameter combination i. Since ELMs are initialized randomly, we chose the best
results out of ten ELM initializations. The ELM parameters and the training
time are listed in the Appendix.

3.1 Synthetic Example

As a synthetic toy-example for a parameterized process, we model the Gaussian

function f(x, μ, σ) = e
−(x−μ)2

2σ2 with x as the process input, and μ and σ as the
process parameters. Fig. 2a shows the results of learning f in the range [−5, 5]
with step size 0.1. μ was varied from −1 to 1 and σ from 1 to 3 each in 5 steps,
which results in 25 parameter combinations. The test error EMSR−ELM =
0.00575 with model space regression is almost ten times lower than the error
EELM = 0.05086 using a single ELM to learn f(x, μ, σ).

Next, we vary the amount of training data. We compare the error rate of the
monolithic ELM to MSR-ELM on the Gaussian function with fixed μ = 0 and a
varying number of equidistant observations of σ in the range [1, 3]. Fig. 2b shows
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(a) Gaussian LOOCV results for 10 out of the 25 used combinations of μ and σ. The
target and the prediction of MSR-ELM overlap most of the time, except for the curve
crests in the rightmost column.

(b) Results with only four σ observations
in the range [1, 3].

(c) Test Error rate depending on the num-
ber of σ observations in the range [1, 3].

Fig. 2: Gaussian LOOCV results. Each plot in (a) and (b) shows test results for
novel process parameter combinations.

the results for four σ-observations, which means that the learners could only use
three observations to predict the curve for the fourth process parametrization.
Fig. 2c shows that MSR-ELM is by far better than the monolithic ELM when
only few observations are present. We attribute this superiority to the modu-
lar character of MSR, which results in lower-dimensional input spaces for the
generalist and specialist models.

3.2 Real-World Example: Modelling the Copper Bonding Process

Ultrasonic wire bonding is a cold welding technique to connect the electrodes
of electrical devices. The copper bonding process depends strongly on several
parameters, e.g. the applied normal force and ultrasound amplitude. In order
to improve the quality of the copper bonds, a model of the bonding process was
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Fig. 3: InCuB LOOCV test results for the 25 parameter combinations. Each cell
depicts the recorded (target) and predicted wire deformation (WD) over time for
the process parameters normal force and voltage. The test prediction for each
parameter combination is made using the other 24 combinations for training.
The shaded area corresponds to the twofold standard deviation of the target
values.

developed in the project ’Intelligent Copper Bonding’ (InCuB, [12]). We compare
the monolithic and the MSR approach on the dataset from [3] for modelling the
ultrasonic softening effect of the bonding process.

The dataset consists of 25 curves, which describe the copper wire deformation
over 250 time steps in dependence to the process parameters normal force and
voltage of an ultrasound module. Fig. 3 shows the prediction results for the wire
deformation by the monolithic ELM and the MSR-ELM depending on the pro-
cess parameters. The average LOOCV-error EMSR−ELM = 0.00363 for the wire
deformation is significantly lower then the error EELM = 0.00543 of the mono-
lithic approach (Wilcoxon paired signed-rank test p = 0.00119). The ’flatness’
of the model space in this example is confirmed by the insignificant performance
degradation if a linear model is trained as generalist (ELinear−MSR−ELM =
0.00384, p = 0.242).
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4 Conclusion

We presented a modular approach with regression in the model space of ELMs
to model parametrized processes. The comparison to a monolithic ELM showed
the superiority of MSR. This is due to the modularity of MSR, which reduces the
dimensionality of the input space for the process model and exploits the flatness
of the model space to achieve excellent generalization from few observations.

5 Appendix

All input variables were scaled to the range [−1/I, 1/I], where I is the number input neu-
rons. ELM parameters were determined via repeated, manually driven grid parameter search.
N : Number of reservoir neurons, Scaling ain and abias: Scaling of the uniform distribution
from which the input weights W in and biases b are drawn; α: Ridge regression coefficient,
T : Training time with a single 3.5GHz CPU on a standard workstation.

• Gaussian fct.: ELM: N=300, ain =5, abias =1, α=10−4, T = 6.30s
• Gaussian fct.: MSR-ELM: ELMS : NS =50, ainS =5, abiasS =1, αS =10−6, TS = 0.14s

ELMG: NG =100, ainG =5, abiasG =1, αG =10−6, TG =0.30s

• InCuB ELM: N=100, ain =1, abias =0.8, α=10−8, T = 4.4s
• InCuB MSR-ELM: ELMS : NS =50, ainS =20, abiasS =1, αS =10−10, TS =0.22s

ELMG: NG =20, ainG =1, abiasG =1, αG =10−2, TG = 0.26s
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