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Abstract. Machine learning has been well applied and recognized as an
effective tool to handle a wide range of real situations, including medical
applications. In this scenario, it can help to alleviate problems typically
suffered by researchers in this field, such as saving time for practitioners
and providing unbiased results. This tutorial is concerned with the use
of machine learning techniques to solve different medical problems. We
provide a survey of recent methods developed or applied to this context,
together with a review of novel contributions to the ESANN 2016 special
session on Machine learning for medical applications.

1 Introduction

Machine learning (ML) has been an active research area in the last decades
finding success in many different applications, among them in medical problems.
ML is capable of automating manual processes carried out by practitioners,
which are usually time-consuming and subjective. Therefore, the use of machine
learning can save time for practitioners and provide unbiased, repeatable results.
Additionally, the large dimensionality of data in medicine together with the
common reduced sample size of pathological cases makes indispensable the use
of advanced machine learning techniques for clinical interpretation and analysis.

The detection and interpretation of pathological conditions usually require
a large of number of experts available, desirably showing a broad experience
in the topic. However, the number of experts is sometimes not enough, and
other problems may appear such as disagreement among experts [1]. There-
fore, in a field which requires human experts with a high level of expertise and
able to maintain a high degree of concentration —and even so, it is very prone
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to errors—, machine learning techniques can help improve diagnostic accuracy
and standardization among clinicians, and for development of computer-based
decision support tools that model expert behavior.

Moreover, with the recent advent of Big Data, the explosion in data avail-
able for analysis is as evident in healthcare as anywhere else. Private and pub-
lic insurers, healthcare providers, particularly hospitals, physician groups and
laboratories, and government agencies are able to generate far more digital in-
formation than ever before. In such a situation, the research community can
take advantage of machine learning techniques and their ability to tackle mil-
lions of examples at a time, as well as helping in other issues such as human
interpretability, lack of data availability, or unbalanced data.

Machine learning comprises a wide set of techniques that can be helpful in
medical applications. Classification is perhaps the most famous one, since it
corresponds to a task that occurs frequently in everyday life. For example, when
having to classify medical patients into suffering a certain illness, or risk of ac-
quiring it. Popular classification techniques usually applied in medical problems
are neural networks, support vector machines, decision trees or Bayesian learn-
ers, among others. Classification can be also viewed as one form of prediction,
with the restriction that the value to be predicted is a discrete class. How-
ever, there are situations in which the goal is to provide a numerical prediction,
which is known as regression. Another popular category of machine learning is
called clustering, which consists in examining the available data to find groups
of examples that are similar in some way. Since these groups are not known
beforehand, it is considered an unsupervised task, useful when we do not know a
priori the different types of patients that we are dealing with, for instance. Other
ML techniques that are gaining increasing attention in the last few years by the
medical community are those related with dimensionality reduction. This kind
of techniques are useful to find the important characteristics of the patients, or
in the classification of the so-called DNA microarray data, in which it has been
demonstrated that most genes measured in a DNA microarray experiment are
not relevant for an accurate classification among different classes of the prob-
lem. Dimensionality reduction techniques soon became indispensable, not only
to remove redundant of irrelevant features, but also to help biologists identify
the underlying mechanism that relates gene expression to diseases.

2 The need for machine learning in medical applications

Machine learning is an area of Artificial Intelligence that appears from the evolu-
tion of pattern recognition, probability theory, optimization and statistics, and
whose purpose is allowing computer programs to learn from data, building a
model to recognize common patterns, devise data-driven predictions and be-
ing able to take knowing, smart decisions based on these. Learning from data
encircles certain difficulties, since data sets are frequently characterized by [2]:

• Incompleteness, as frequently there are missing values.

226

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



• Incorrectness, most of the times there is random or even systematic noise
in the data, perhaps due to sensor errors.

• Inexactness, because sometimes the selection of parameters is not adequate
or complete for a certain task, or redundant data is present.

• Sparseness, as there might be very few or non-representable patient records
available.

All these problems are quite common in medical applications, requiring from
machine learning adequate tools for researchers to fight them. A variety of these
techniques, including artificial neural networks, Bayesian networks, support vec-
tor machines, and decision trees, have been widely applied to the development
of diagnostic and predictive models, resulting in effective and accurate deci-
sion making tools. Besides these characteristics of medical datasets, and more
acutely during the last years, there has been a dramatic increase in medical
data being collected, due to new detection methods, new techniques and new
diagnostic modalities being developed. This fact adds complexity to the already
complicated, high-dimensional and heterogeneous data types and systems to be
analyzed by the clinicians, giving rise to an even greater potential impact and
need of machine learning in the field, as analytical solutions are impossible, and
human-generated, rule-based heuristics intractable. For this reasons, diagnostic,
prognostic and clustering approaches have been constantly appearing during the
last years in different medical areas [3, 4, 5].

Another important aspect is related with the preparation of medical data.
Data samples are the basic food for machine learning methods. Each sample
is described by several features, each one of this consisting of different types
of values. It is advisable to have information about the specific type of data
being used, as this will allow for the selection of adequate tools and techniques
for the analysis. As said above, the quality of the data is an important issue,
and draw the preprocessing techniques [6] that perhaps should be used (as it
is the case in most medical applications) in order to facilitate or even make it
possible the application of ML techniques. Some data quality issues are men-
tioned before (noise, outliers, missing or duplicate data, etc.), for which several
preprocessing techniques are available. Furthermore, in medical applications is
well-known the need for dimensionality reduction, as some datasets have unman-
ageable high input dimension for ML algorithms, such as the case of microarrays
or genetic datasets previously mentioned. From these reduction methods, specif-
ically feature selection and feature extraction techniques are the most common
in medical applications. If preprocessing is needed in ML in medicine, as the
data is frequently noisy, incomplete, etc., there is even more gaining reducing
dimensionality when the datasets have a large number of features [7], as it is the
case in many clinical applications. Besides, feature selection can eliminate irrele-
vant features, reduce noise and frequently achieves more robust learning models
due to the involvement of fewer features. Many applications of dimensionality
reduction techniques can be found in the medical area, specifically some of them
are presented in this special session [8, 9, 10, 11].
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The use of machine learning techniques in the clinical field constitutes a
crucial step in a growing trend towards more personalized, predictive medicine.
At a more fundamental level, it is also evident that machine learning can also
help to improve our basic understanding of the mechanisms under the develop-
ment of several sickness and disorders. A successful implementation of machine
learning techniques can greatly avail integration of more sophisticated computer-
based systems in healthcare, an important area not only technologically but also
socially, as during the last years healthcare costs have constantly increased,
professionals and practitioners are overloaded with patients and also with new
knowledge and techniques that should be trained, governments are increasingly
relying on private healthcare companies, and thus crescent numbers of citizens
are excluded from healthcare systems. Machine learning might be, why not, a
new way that permits the reduction of health costs while increasing the quality
of assistance to an exhausted healthcare system, paving the way ironically for a
more humanized medical care.

3 Recent contributions

Machine learning has been an active research area finding success in many dif-
ferent medical problems, as can be found in the literature [12, 13, 14]. Proof of
this are the recent advances in this field, which allow to automatize manual pro-
cesses carried out by practitioners, saving time for them and providing unbiased
results. A brief review on the recent contributions is subsequently presented,
according to the set of techniques mentioned in the Introduction: classification,
regression, clustering, and dimensionality reduction.

Classification problems are very common in medicine, in order to detect or
diagnose a disease, or even to determine its severity. In this context, different
classical machine learning algorithms have been considered, including for ex-
ample random forests for the classification of Alzheimer’s disease [15], support
vector machines (SVM) for glaucoma screening [16], or the well-known k-nearest
neighbor (kNN) classifier for retinal hemorrhage detection in fundus images [17].
Additionally, new learning techniques have been specifically developed to solve
different clinical problems. Among them, the path-adaptive sparse approxima-
tion (PASA) method [18] was designed to classify lung images into one of the
five tissue categories, or new learning-based techniques were presented in [19] to
measure disease progression in patients with multiple sclerosis.

Classification techniques have been used not only to support the diagnosis of
different diseases, but also to analyze clinical information in the form of text or
reports. For example, a novel regular expression discovery (RED) algorithm was
presented in [20] to classify regular expressions used in clinical environments, or
a novel framework was proposed in [21] to automatically capture relations from
narrative text included in pathology reports.

When the goal is to provide numeral prediction, instead of discrete classes,
regression techniques are used. Adaptive kernel regression was used, for exam-
ple, to the definition of a spatiotemporal atlas of the brain [22], whilst regression
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forests were applied to the detection and localization of anatomical structures
in computer tomography (CT) scans [23]. Another example is the automatic
segmentation of bones in radiographs, which is useful for disease diagnosis, pre-
operative planning, and treatment analysis. Two fully automatic methods were
proposed to perform this task [24, 25], using regression voting systems based on
random forests. Logistic regression was used to create predictive models which
can be used to identify disease risk associations using data from electronic medi-
cal record databases [26], and it was combined with the kNN algorithm to predict
patients’ registration on transplant waiting lists [27].

Clustering is also popular in medical problems, and several works use it in
different contexts. Magnetic resonance imaging (MRI) is frequently used to
analyze brain diseases, and different approaches are based on clustering. For
example, a new method is proposed in [28] to predict the subjects’ behavior
during a scanning session, and an algorithm to segment high angular resolution
diffusion MRI into multiple regions is presented in [29]. Histopathology images
are used in [30] to detect abnormal patterns associated to cancer tissues by
means of classification, segmentation and clustering. And for medical images
in general, efficient clustering algorithms are presented in [31] based on fuzzy
c-means and non-Euclidean distance measures.

Dimensionality reduction techniques should be finally highlighted due to their
increasing popularity in the last years. They became indispensable mainly be-
cause of the large dimensionality of data and the reduced number of pathological
samples. Therefore, both feature extraction and feature selection methods were
applied to different problems in medicine. For example, feature selection meth-
ods were successfully applied to eliminate redundant information and select the
optimal subset of features [32, 17], analyze the contribution of different features
to the classification procedure [33], reduce costs such as the processing time
[34, 35], or even to understand the underlying causes of inter-expert variability
[1]. Regarding feature extraction, it is worth mentioning the use of different
techniques such as principal component analysis (PCA) or linear discriminant
analysis (LDA) to improve image classification [36, 37].

4 Contributions to the special session

The special session Machine Learning for Medical Applications has received re-
search works from different groups, presenting approaches to deal with image and
signal analysis, feature extraction and selection, recognition and classification,
and microarrays. Each accepted paper is briefly introduced in the following.

The observation of electroencephalographic (EEG) signals allows to detect
arousals, a common cause of fragmented sleep. In this context, a model based
on signal processing and machine learning is presented in [38] to automatically
detect arousals. The authors proposed a set of relevant features extracted from
the EEG signals, as well as a machine learning model obtained from a combina-
tion of individual models. The experiments conducted on real patients reported
positive results, with an error of 13%.
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The microglial cells’ states are indicative of what is occurring in the central
nervous system, and so they are associated with different neuronal diseases.
A first approach for an automatic classification of the state of microglial cells
into three classes is presented in [39]. It uses stacked denoising autoencoders, a
type of deep neural networks, and was validated on a 45-image dataset. Taking
into account the cells’ morphology and the variability among experts, promising
results are provided by this preliminary approach with an accuracy around 64%.

In the field of neuro-oncology, a machine learning-based approach is pro-
posed in [40] to discriminate brain glioblastomas from single brain metastases.
The analysis approach uses well-established methods for feature extraction and
classification, including a collection of different learning algorithms. Besides di-
agnostic classification, the method could be also used as a guide for surgery
planning since it provides enough information to create a map descriptor.

The diagnose of lung cancer can be achieved by categorizing lung nodules
into benign or malignant. A computer-aided diagnosis system, which makes this
classification automatically, is presented in [11]. It includes feature extraction
techniques from chest computerized tomographies (CT) and feature selection
methods to define an optimal subset of features. Additionally, the authors used
several classifiers in order to evaluate the different feature subsets. The method
provides a good performance with an AUC value over 96%.

The bag-of-steps feature generation method is applied in a novelty way for
predicting rehabilitation periods [41]. This approach is based on the bag-of-
words methodology used in text recognition and computer vision, and here de-
scribes the features of a rehabilitation session. Using this information, a predic-
tive model is created to distinguish between patients with different rehabilitation
patterns. The results obtained are promising, with an accuracy over 80%.

Brain tumor segmentation in magnetic resonance imaging (MRI) is the focus
of attention in [42]. The authors presented an application of the successive
projection algorithm (SPA) for initialization of non-negative matrix factorization
(NMF) in multiparametric MRI, and compare it with random initialization.
The experimentation demonstrated that the quality of tumor segmentation is
statistically similar in both methods, whilst their proposal is more efficient and
results obtained are reproducible, a relevant property in the medical domain.

The degree of redness in the bulbar conjunctiva, known as hyperemia, can
serve as an early indicator of dry eye syndrome. Different features can be ex-
tracted from eye images in order to estimate the level of hyperemia, and following
classified by means of machine learning algorithms. In [10], a methodology based
on feature selection methods (filters and wrappers) is used to analyze the influ-
ence of different features when determining the hyperemia level. The results
demonstrated the effectiveness of feature selection in this clinical domain.

DNA microarray classification is a challenging issue in the field of machine
learning, mainly because there is a mismatch between the high gene dimension
and the small sample size. Three different contributions of this special session
are focused on this interesting topic. In [9], the authors proposed an ensemble
feature selection method based on combining rankings of features. Aggregation
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methods are used to combine the individual rankings, and the final subset of
features is selected using the inverse of Fisher discriminant ratio as data com-
plexity measure. Their proposal provides good results on seven DNA microarray
datasets, using the SVM as classifier. Other application to microarrays can be
found in [43], where a new learning algorithm for one-layer neural networks based
on a singular value decomposition is presented. This approach, in which a sys-
tem of linear equations is used to obtain the optimal parameters of the model,
provides a fast learning algorithm for high dimensional problems, as is the case
of microarray datasets. The experimental results demonstrated the adequacy of
this method, by providing improvements in CPU time with no significant loss of
accuracy. Class imbalance is another property of this type of data and, for this
reason, the authors of [44] proposed to analyze the usefulness of data complexity
measures to evaluate the SMOTE algorithm. More specifically, its behavior has
been analyzed before and after applying feature gene selection.

The large amount of variables and the imbalance between classes are typical
problems in the assessment of mortality in patients with cardiovascular disease
risk factors. This topic has been considered in [45], whose authors have analyzed
the behavior of different machine learning methods to solve this problem. The
aim of the study was to determine the most suitable methodology to predict
mortality, and so they considered different variable selection techniques, class
balancing methods and classifiers.

In [8], the problem of selecting genes differentially expressed with some phe-
notype of interest (POI) in large genomic datasets has been addressed. The
proposed approach uses spatiotemporal ICA as a previous step in the use of
matrix factorization, and combines information from different spatiotemporal
parameter values to improve the set of selected genes. The experimental results
demonstrated that the method allows to significantly increase the proportion of
genes related to the POI in the final selection.

Brain-computer interface (BCI) is also a common topic in machine learning
applied to medical problems, and an approach for unsupervised BCI classifica-
tion is presented in [46]. Not having enough training data to build a robust
classification model for a specific subject is a typical problem in this scenario,
and it was addressed by the authors using a subject selection algorithm com-
bined with Riemannian geometry. This work presents an effective solution to a
frequent challenge with good results.

One of the most usual morbidities associated to diabetes is diabetic retinopa-
thy, which can be properly controlled by screening programs. In [47], random
forests are used to build a classifier which may determine whether a diabetic
patient is likely to develop retinopathy. This learning model can be used in
a decision support tool to help practitioners in the determination of the best
screening periodicity for each patient.
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tion of high angular resolution diffusion mri using sparse riemannian manifold clustering.
Medical Imaging, IEEE Transactions on, 33(2):301–317, 2014.

[30] Yan Xu, Jun-Yan Zhu, Eric Chang, and Zhuowen Tu. Multiple clustered instance learning
for histopathology cancer image classification, segmentation and clustering. In Computer
Vision and Pattern Recognition, IEEE Conference on, pages 964–971. IEEE, 2012.

[31] SR Kannan, R Devi, S Ramathilagam, and K Takezawa. Effective fcm noise clustering
algorithms in medical images. Computers in biology and medicine, 43(2):73–83, 2013.
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Disease Neuroimaging Initiative, et al. Principal component analysis-based techniques
and supervised classification schemes for the early detection of alzheimer’s disease. Neu-
rocomputing, 74(8):1260–1271, 2011.

[37] Beatriz Remeseiro, Marta Penas, Noelia Barreira, A Mosquera, Jorge Novo, and Carlos
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Juan Gómez-Sanchis, and Josep Redón. Multi-step strategy for mortality assessment in
cardiovascular risk patients with imbalanced data. In European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, 2016.

[46] Samaneh Nasiri Ghosheh Bolagh, Mohammad Bagher Shamsollahi, Marco Congedo, and
Christian Jutten. Unsupervised BCI Classification using Riemannian Geometry and Rank
of Subjects. In European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning, 2016.
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