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Abstract. The restricted Boltzmann machine (RBM) is a generative
model widely used as an essential component of deep networks. However, it
is hard to train RBMs by using maximum likelihood (ML) learning because
many iterations of Gibbs sampling take too much computational time.
In this study, we reveal that, if we consider RBMs with Gaussian visible
units and constrain the weight matrix to the Stiefel manifold, we can easily
compute analytical values of the likelihood and its gradients. The proposed
algorithm on the Stiefel manifold achieves comparable performance to the
standard learning algorithm.

1 Introduction

The restricted Boltzmann machine (RBM) is a bipartite graphical model that is
widely used as a building block of deep neural networks [1], but it is hard to train
by using maximum likelihood (ML) learning. Computation of the likelihood is
analytically intractable and requires many iterations of Gibbs sampling, which
entails a lengthy computation. Here, Contrastive divergence (CD) learning has
been developed as an approximate way of computing the gradient of ML learning
and is commonly used in practice [1, 2]. CD learning computes the ML gradient
with samples obtained by a limited number of Gibbs samplings and empirically
converges close enough to the ML solutions in a short time [3]. However, in gen-
eral, there are almost no theoretical guarantees of convergence or maximization
of the likelihood in CD learning [4].

In this study, we reveal that the likelihood and its gradients in RBMs with
Gaussian visible units are analytically tractable when the weight matrix is con-
strained to the Stiefel manifold. We propose a novel algorithm based on geodesic
flow on the Stiefel manifold for Gaussian-Bernoulli RBM and demonstrate its
effectiveness in experiments on natural image patches. Because our algorithm
has a tractable likelihood, there are advantages to using it to monitor the con-
vergence and maximization of the likelihood. Moreover, we prove theoretically
that the proposed method arrives at essentially the same solution as standard
ML learning in Gaussian-Gaussian RBM.

2 Geodesic flow of ML learning on Stiefel Manifold

Let us consider the problem of minimizing a cost function L with regards to a
parameter matrix A ∈ R

M×N . We assume M ≤ N and that M row vectors of
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A are mutually orthogonal N -dimensional unit vectors satisfying AAT = IM .
The set of all such matrices is known as the Stiefel manifold. In particular,
the Stiefel manifold with N = M reduces to the orthogonal group. When one
minimizes L by using the steepest descent algorithm, the update rule is given
by At+1 = At − εΔA, where ε is a small learning constant and ΔA = dL/dA.
It should be noted that, because At+1 is not in the manifold, it is necessary to
project At+1 to the manifold in each iteration [5].

In contrast, by considering an extension of the natural gradient method, one
can minimize L along geodesic flows on the Stiefel Manifold as follows [6]:

At+1 ← At exp
(

ε(AT
t ΔA−ΔATAt)/2

)

. (1)

Because At being on the Stiefel manifold ensures that At+1 will also be on
it, we can omit the projection to the manifold in each iteration. In practical
applications such as ICA, this geodesic algorithm has outperformed the standard
steepest decent algorithms [5, 6]. In the following, we apply it to two types of
RBM with Gaussian visible units.

2.1 Gaussian-Bernoulli RBM

The model distribution of a Gaussian-Bernoulli RBM is defined as follows [1]:

p(h,v) = exp

(

− 1

2σ2
|v − b|2 + 1

σ
hTWv + cTh

)

/Z. (2)

Let us denote binary hidden variables as hi = {0, 1} (i = 1, ...,M) and continuous
visible variables as vi (i = 1, ..., N). Moreover, we denote the variance of the
visible units by σ2 and the normalization constant by Z. We estimate the weight
matrix W ∈ R

M×N and bias vectors b and c.
The maximum likelihood (ML) estimate is obtained by minimizing the neg-

ative log-likelihood L = − ∫

q(v) ln p(v)dv, where q(v) denotes the input distri-
bution and p(v) denotes the marginal model distribution. The steepest gradient
of the negative log-likelihood is given by Wt+1 = Wt + εΔW with ΔW =<
hvT >q − < hvT >p [1]. Let us denote the average over training examples
generated from q(v) as < · >q and the average over the model distribution as
< hvT >p. After marginalizing h in the first term and v in the second term,
the update ΔW can be transformed into

ΔW =< g(Wv/σ + c)vT >q −(σ < hhT >p(h) W+ < h >p(h) b
T ), (3)

where g(x), a function with a vector argument x, denotes a vector whose i-th
element is a sigmoid function g(xi). The second term is analytically intractable
because one needs to take a summation over an exponential number of hidden
states obeying the following model distribution:

p(h) = exp
(|WTh|2/2 + (Wb/σ + c)Th

)

/Z. (4)

Surprisingly, we can avoid this analytically intractable summation by con-
straining the parameter space of W . Let us assume that the weight matrix W
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is constrained to W = DA, where A is included in the Stiefel Manifold and D is
a diagonal matrix D = diag(d1, d2, ..., dM ). Substituting W = DA into (4), the
model distribution p(h) becomes independent among the hidden variables,

p(h) =

M
∏

i=1

g(yi)
hi(1 − g(yi))1−hi , (5)

where we define yi = d2i /2 + diaib/σ + ci and denote the i-th row vector of
A by ai. The constraint of W = DA corresponds not only to reducing the
dimension of the search space W but also to giving a prior that hidden units act
independently.

Using the independent distribution (5), we can compute the update rule (3)
analytically as follows:

ΔA = D[< g(Wv/σ + c)vT >q −(σKW + g(y)bT )], (6)

where Kii = g(yi) (i = 1, ...,M) and Kij = g(yi)g(yj) (i �= j). The update
rule of A is given by (1) with (6). In addition, the update rules of the other
parameters are given by the ordinary steepest directions

di ← di + ε[< g(diaiv/σ + ci)aiv >q −g(yi)(aib+ σdi)], (7)

b ← b+ ε[< v >q −(b+ σWT g(y))], (8)

c ← c+ ε[< g(Wv/σ + c) >q −g(y)]. (9)

Moreover, the constraintW = DA makes the negative log-likelihood analytically
tractable as follows:

L =<
1

2σ2
|v−b|2−Σi ln(1+e

diaiv/σ+ci) >q +Σi ln(1+e
yi)+N ln(

√
2πσ). (10)

In general, L is analytically intractable and difficult to use to monitor the
progress of learning in the Gaussian-Bernoulli RBM. In contrast, our method
can monitor how well and determine where the learning trajectory converges.

2.2 Gaussian-Gaussian RBM

We can also obtain the geodesic ML learning rule in Gaussian-Gaussian RBM,
whose model distribution is defined as follows [7]:

p(h,v) = exp

(

− 1

2s2
|h− c|2 − 1

2σ2
|v − b|2 + 1

sσ
hTWv

)

/Z, (11)

where both visible and hidden units take continuous real values. Note that the
likelihood and its gradient in the standard ML learning without any constraint
are analytically tractable in Gaussian-Gaussian RBM [7]. In this study, we
consider ML learning with W = DA in order to obtain an insight into how this
constraint changes the solution compared with that of standard ML learning.
The geodesic ML learning on the Stiefel manifold is given by

A ← A exp
(

ε(ATD2AC − CATD2A)/2
)

, (12)

di ← di + εdi[< (aiv)
2 >q −σ2/(1− d2i )], (13)
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where C is the data covariance matrix of the input distribution q(v). We set the
mean values of the input data to

∫

vq(v)dv = 0 and set the bias parameters to
b = c = 0 for simplicity, but we can also formulate and analyze the general case
in the same way.

3 Analysis of Gaussian-Gaussian RBM

Here, we provide a theoretical guarantee that ML learning on the Stiefel manifold
arrives at essentially the same ML solution as standard ML learning in Gaussian-
Gaussian RBM. Due to space limitations, we will consider only the case of M =
N in the following analysis.

Let us assume that the data covariance matrix C has non-degenerate eigen-
values λi (i = 1, ..., N) satisfying λ1 > · · · > λk > σ2 > λk+1 > · · · > λN
and is diagonalized such that C = V T diag(λ1, ..., λN )V , where V is an N × N
orthogonal matrix. Under these assumptions, the previous study found that the
stable solution of standard ML learning is limited to the following W̄ [7]:

W̄ = Udiag
(

√

1− σ2/λ1, ...,
√

1− σ2/λk, 0, ..., 0
)

V, (14)

where U is an arbitrary N×N orthogonal matrix. At the stable solution W̄ , the
model distribution becomes a Gaussian distribution: p(v) = N (v;0, V Tdiag(λ1
, ..., λk, σ

2, ..., σ2)V ). This means that the trained Gaussian-Gaussian RBM ex-
tracts only the largest k principal components, whose eigenvalues are larger than
the model variance σ2.

Under the assumptions of the previous study, we find that the ML learning
on the Stiefel manifold (12, 13) has the following analytical solutions:

Proposition. The stable equilibrium solution of ML learning on the Stiefel

manifold (12, 13) is W̄ = diag
(

√

1− σ2/λ1, ...,
√

1− σ2/λk, 0, ..., 0
)

V .

Proof. The update rule (12) stops at ATD2AC = CATD2A. Because ATD2A
and C are commutative, these matrices are simultaneously diagonalizable, and
we obtain an equilibrium Ā = V . In addition, substituting Ā = V into (13), we
get d̄i = 0 or d̄i =

√

1− σ2/λi with λi > σ2.
Next, we check the stability of the equilibrium solution in a similar process

as shown in the standard ML learning [7]. We can represent the perturbation
of A along the Stiefel manifold as ΔA ≡ A exp(ATΔXA)−A, where ΔX is an
N × N alternative matrix whose entries satisfy ΔXij = −ΔXji. Because the
perturbation ΔXij takes an infinitesimal value |ΔXij | � 1, we get ΔA ∼ ΔXA.
The stable solution requires the following inner product to become negative,

Tr
(

ΔATΔFA

)

+ΣiΔdiΔFdi

∼
N
∑

a<b

ΔX2
ab(d

2
a − d2b)(λb − λa) +

N
∑

i=1

Δd2i
{

λi − (1 + d2i )/(1− d2i )2σ2
}

, (15)

where Δdi denotes the perturbation of di. When one transforms the update
rule (12) into the form At+1 − At = FA(At, di,t) and the update rule (13) into
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di,t+1 − di,t = Fdi(At, di,t), the perturbations of the gradients, ΔFA and ΔFdi ,
are given by ΔFA = FA(Ā+ΔA, d̄i +Δdi) and ΔFdi = Fdi(Ā+ΔA, d̄i +Δdi).
We can easily confirm that the inner product (15) becomes negative if and only

if D̄ = diag
(

√

1− σ2/λ1, ...,
√

1− σ2/λk, 0, ..., 0
)

. Therefore, the ML learning

on the Stiefel manifold has the global minimum W̄ = D̄Ā. �
We have thus proven the remarkable fact that constraining the weight space

to W = DA corresponds to eliminating the rotational degrees of freedom caused
by U in the standard ML stable solution. In addition, the model distribution
p(v) coincides with that of standard ML learning. Therefore, ML learning on
the Stiefel Manifold gives essentially the same solution as standard ML learning.

In the case of M < N , we can also analytically obtain the ML solutions.
Although some local minima appear in the ML learning with W = DA, the
global minima coincide with those of the standard ML solutions, as is shown
with M = N .

4 Experiments on Gaussian-Bernoulli RBM

To confirm the effectiveness of our method, we trained a Gaussian-Bernoulli
RBM with the algorithm (6-9) on natural image patches sampled from the van
Hateren natural image database [8]. In the preprocessing, we applied global
contrast normalization and ZCA whitening to 50,000 image patches of 14x14
pixels. The data set consisted of 40,000 training cases and 10,000 test cases. We
set σ2 to be on the same scale as the variance of the data.

As is shown in Fig. 1A, our method achieved a test error comparable to
that of the persistent contrastive divergence (CD) algorithm [2] in the Gaussian-
Bernoulli RBM with M = 16 and N = 196. We computed the test error by the
negative log-likelihood on the test cases. The thick line in Fig. 1A represent the
mean over 10 training runs with different random initializations and the dotted
lines represent the standard deviation. The CD algorithm with no constraint
on W has an intractable likelihood, but we set the number of hidden units to
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Fig. 1: Negative log-likelihood of test data on natural image dataset: (A) Com-
parison of proposed method and CD algorithm (M = 16, N = 196); (B) Gabor-
like filters obtained by proposed method (M = N = 196)
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a small value and computed the exact value of the likelihood. Our method was
constrained to W = DA and had fewer free parameters than the CD algorithm.
Nevertheless, it achieved the same test error as the CD algorithm.

We also trained a Gaussian-Bernoulli RBM with N = M = 196 with our
method. Because we can compute the likelihood function by using (10) even in
the case of large M , we can easily monitor the convergence and test error. We
randomly selected the learned filters and the reshaped rows of W with di �= 0,
and show them in Fig. 1B. As Gabor-like filters are extracted, our method would
seem to be useful in feature extraction.

5 Conclusion and Future work

We proposed a novel algorithm to train RBMs with continuous visible units,
where the constraint on the Stiefel manifold enables us to compute analytical
values of the likelihood and its gradients. In the experiments on Gaussian-
Bernoulli RBM, our method achieved comparable performance with the CD al-
gorithm. For Gaussian-Gaussian RBM, we provided a theoretical guarantee that
the proposed method obtains the essentially same solution as that of standard
ML learning.

A further direction of study is to apply a similar constraint on the parameter
space to more general forms of RBMs, such as exponential family harmoniums
and stacked RBMs. In deep networks, it has been suggested that orthogonal
weight matrices obtained by layerwise pre-training accelerate the convergence
of supervised learning after pre-training [9]. It remains to be explored how to
apply our method to pre-training of deep networks.
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