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A Reservoir Activation Kernel for Trees
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Abstract. We introduce an efficient tree kernel for reservoir computing
models exploiting the recursive encoding of the structure in the state ac-
tivations of the untrained recurrent layer. We discuss how the contractive
property of the reservoir induces a topographic organization of the state
space that can be used to compute structural matches in terms of pairwise
distances between points in the state space. The experimental analysis
shows that the proposed kernel is capable of achieving competitive classi-
fication results by relying on very small reservoirs comprising as little as
10 sparsely connected recurrent neurons.

1 Introduction

The classification of tree data is a general and popular problem since much in-
formation can naturally be represented in a hierarchical structured form (e.g.
images, molecules, text documents, biomedical data). Here, we turn our atten-
tion on reservoir computing approaches for trees, which implement a recursive
encoding of input structures by exploiting the recurrent layer of sparsely con-
nected reservoir neurons. By this means, they implicitly realize a mapping of a
structure into a state space defined by the activation of the reservoir neurons fol-
lowing the tree encoding process. In other words, the reservoir activations can
be interpreted as features summarizing structural properties of an input tree.
More importantly, the contractive property of the reservoir [1] ensures that the
state space of the reservoir activations is characterized by a topographical or-
ganization, such that similar structures are likely to produce the same reservoir
neuron activations or, else said, that they are mapped to neighboring points in
the reservoir state space. In this work, we exploit such intuition to define an effi-
cient kernel that computes similarity between trees in terms of distances between
the corresponding projections in the reservoir state space of a Tree Echo State
Network (TreeESN) [1]. The proposed approach falls into a family of activation
kernels exploiting the internal representation developed by a recursive model
for trees. In [2], a kernel is defined on the discrete activations of a recurrent
self-organizing map for trees, while in [3] the kernel exploits the topographic
projections defined by the activations of the hidden Markov states of a gener-
ative mapping for trees [4]. Both approaches require a costly training phase of
the underlying unsupervised learning model and require a large number of recur-
rent units/hidden states in order to develop a feature space representation that
allows capturing sufficient structural information. In this work, we put forward
the idea that the dense recursive encoding defined by the untrained reservoir

*This work is partially supported by the MIUR-SIR project LIST-IT (grant n.
RBSI14STDE)
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of a TreeESN provides a very rich representation of the structural knowledge
that allows defining an efficient kernel over very small reservoirs. The exper-
imental analysis shows how this leads to compact reservoirs with competitive
classification accuracies over heterogeous application, despite the kernel being
non adaptive given the untrained nature of the reservoir.

2 A topographic kernel on reservoir encodings of tree data

Let us consider a dataset D = {t',...,t"} of L structures t' that are labeled
and rooted trees with maximum finite out-degree D (i.e. the maximum number
of children of a node). Each vertex w in the input tree is associated with a
N,;,-dimensional label ¢,,. The set of children of node w is denoted by ch,,.

Input trees are mapped into tree-structured feature (state) representations
through the computation carried out by a TreeESN. A TreeESN is neural net-
work model for tree structured data, implementing a recursive encoding of input
trees by means of a hidden reservoir layer of non-linear and sparsely connected
recurrent units. Given an input tree t, the TreeESN encoding process is per-
formed by resorting to a bottom up visit of t, starting from the leaf nodes and
ending in the root. For each node u, the N-dimensional reservoir computes a
feature representation (or state) denoted by z,,, according to

VECh,

where W;,, € RV>*Nin is the input-to-reservoir weight matrix (possibly includ-
ing a bias term), W € RN*N i the recurrent reservoir weight matrix and f is
a unit-wise applied activation function (we use tanh). The reservoir parame-
ters are initialized to implement a contraction mapping, which ensures stability
of state dynamics. In this regard, a key hyper-parameter of TreeESN is the
contraction coefficient o = D|W||2, which relates to the stability of TreeESN
state dynamics. Although a sufficient condition for contractive initialization of
reservoirs in the L-2 norm prescribes that ¢ < 1, this is often too restrictive in
practical applications, thereby values of o slightly larger than 1 are also consid-
ered [1]. In practice, values in W are randomly initialized and then scaled to
the desired value of o, whereas values in W;,, are chosen from a uniform distri-
bution over [—scale;,, scale;,]. One of the distinctive characterizations of the
TreeESN encoding process is its efficiency, as indeed the reservoir parameters
are left untrained after initialization. Although out of the focus of this paper,
when TreeESNs are applied to supervised learning tasks, a linear readout layer
is used for output computation, typically trained to solve a least mean squared
problem by using direct methods. Details on TreeESNs can be found in [1].
The state space of the reservoir activations is characterized by a topographical
organization induced by the recursive encoding and the contractive properties of
the reservoir, which leads to a Markovian characterization of reservoir dynamics
extended to the case of tree domains [1]. In this sense, the reservoir state space
organization closely recalls that of the hidden Markov states in the generative
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Fig. 1: Bottom up encoding process of an input tree t by the TreeESN reser-
voir and computation of the matches with another tree t’ by means of the e-
neighborhood of the node projections: matching and non-matching t’ nodes are
denoted as squares and Xs, respectively.

topographic mapping model for trees [4]. Such topographic principle ensures
that points that are neighbors in the reservoir state space can be considered to
be encoding similar structural knowledge. By exploiting such information (along
the lines of what [3] does for the generative topographic model) one can define an
efficient tree kernel expressing structural similarity between two trees in terms
of the distance of their encodings in the reservoir state space.

The recursive TreeESN encoding in (1) projects each substructure t,, compos-
ing a tree to a N-dimensional point x, corresponding to the reservoir activation
for the tree node acting as root of the substructure. Figure 1 shows how a tree t
comprising T nodes is transformed into T' vectors x,, = ®(t,,) € Rf\il,l]’ one for
each node u of the tree. Evaluating the similarity between two structures, in this
context, becomes a matter of computing distances between points in the reser-
voir state space. To this end, we define the following weight function between
two generic N-dimensional points x and x’ on the reservoir activation space, i.e.

e—d(z,2"), ifdz,z")<e

0, otherwise

We(z,z') = { (2)
where d(z, 2') is the standard Euclidean distance. The term e determines a neigh-
borhood for the reservoir states which regulates the influence of distant substruc-
tures in defining the kernel-induced similarity measure (see the e-hyperballs in
Fig. 1). In other words, it is the parameter regulating the soft-matching among
the states, determining which reservoir activations configurations can be consid-
ered sufficiently similar. The resulting kernel on TreeESN (KTESN, in short)
between trees t! and t? is

kKTESN(tlatQ) = Z Z We(xuaxu’) (3)
u€EU u' €Uz

where z,, and z,, are the recursive reservoir encodings of subtrees t. and t2,
from tree t! and t2, respectively. Note that (3) can be shown to be a particular
case of Wendland function [5] and as such it is positive definite.
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3 Experimental Results

Experiments have been performed to benchmark KTESN on classification tasks
against the underlying TreeESN and relevant tree kernels in literature. The
datasets span different application areas to show generality of the approach with
respect to varying characteristics of the tree population. The first dataset is from
the INEX 2006 competition [6] and comprises 12,107 trees representing XML
documents from 18 classes, with 65 possible node labels representing XML tags.
Standard training and test sets are available for this dataset [6], with a 50%-
50% split. We also consider two datasets from the KEGG/Glycan database [7],
concerning a binary classification of the molecular structure of glycans. The first
is the Leukemia dataset, comprising 442 glycan structures related to leukemic
cells, with 57 different node labels. The second is the Cystic dataset, comprising
160 molecules and 29 node labels, where positive class denotes those associated
to cystic fibrosis. Both datasets come with a predefined 10-fold partitioning [1].
These benchmark differs considerably from INEX: the task is binary and a small
number of samples is available; trees are small, such that maximum number of
nodes is 23 for Leukemia and 15 for Cystic, and have a small outdegree L = 3.

Different reservoir configurations and TreeESN model hyper-parametrization
have been assessed, by considering reservoirs of 10 and 25 neurons, scale;, €
{0.01,0.1,1} and o € {0.5,1,2,3}. In addition, the effect of the choice of the
KTESN neighborhood metaparameter € has been evaluated by allowing € to
vary in {0.05,0.1,0.2}, which ensures a coverage of maximum 6% of the entire
TreeESN state space, along the lines of [2]. The tree classifiers have been realized
through support vector classification, using the publicly available LIBSVM [§]
software, by means of a C-SVM classifier that receives in input the KTESN
Gram matrices. Different values of the SVM cost parameter Cl,,, have been
explored, i.e. 0.001, 0.01, 0.1, 1, 10, 100, 1000. To account for randomization
effects, we have generated 5 different random reservoir topologies and weights for
each reservoir size: results reported in the following refer to average accuracies
on such 5 reservoirs. In INEX 2006, a 3-fold cross-validation (CV) procedure has
been applied to the training data split to select all the meta-parameters from
the ranges listed above. As for the Glykans datasets, we provide the best 10-fold
predictive performance averaged on the 5 reservoir guesses expressed in terms of
the area under the curve (AUC).

Table 1 reports the performance of the KTESN kernel on INEX 2006 and
confronts it with the results obtained by TreeESN, whose recursive encoding pro-
cess is exploited by KTESN to compute the feature space mapping of the trees.
Additionally, we confront with the AM-SOM kernel [2], which has introduced a
kernel on the activations of a SOM-SD recursive neural network for structures.
Further, we consider an adaptive generative kernel, i.e. AM-GTM [3], exploit-
ing the hidden states of a generative topographic map for trees (GTM-SD) [4].
Since the proposed KTESN is essentially a non-adaptive convolutional kernel,
we also report the performance of the most relevant syntactic tree kernels in
literature, i.e. ST, SST and PT. The results in Table 1 show that the KTESN

32



ESANN 2016 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

KTESN KTESN TrecESN | ST | SST | PT | AM | AM
(N = 10) (N=25) | (N =500) SOM | GTM
43.41 (0.06) | 43.42 (1.15) 12.62 32.02 | 40.41 | 41.13 | 40.07 | 43.71

Table 1: Results on the INEX 2006 dataset: average classification accuracy
on the test set; standard deviation is between brackets (when available). The
number of KTESN reservoir neurons selected in validation is highlighted in bold.

yields to high classification accuracies while using a small number of reservoir
neurons: already 10 units are sufficient to achieve an accuracy that is superior
to that of a TreeESN model with a reservoir of 500 neurons. In this sense, the
compact reservoir of KTESN compares favourably also with the activation mask
kernels computed on the SOM-SD neural network and on the GTM-SD gener-
ative model which require maps of 110 x 80 and 20 x 20 units, respectively, to
achieve the results reported in Table 1. Using barely 10 units, KTESN can out-
perform AM-SOM and achieves a comparable accuracy to an AM-GTM model
which has 40-times more encoding units and whose inferential-encoding process
is quadratic in the number of units, while that by KTESN is O(N) (see (1)).
Differently from AM-SOM and AM-GTM, KTESN is not an adaptive kernel
hence it does not incur in the cost of training the underlying adaptive model.
When compared to other non-adaptive tree kernels in Table 1, KTESN shows a
consistently superior accuracy, even with respect to expressive but computation-
ally demanding kernels such as PT, whose complexity is O(T?) (where T is the
number of nodes in the larger tree). KTESN is O(7?) in the worst case, which is
very unlikely as it requires all the nodes from the two trees being projected in an
hyperball of radius < ¢; more commonly KTESN complexity would be O(e.T),
where c, is a constant depending on the value of the neighborhood parameter €.

Table 2 shows the results of the experimental assessment on Glycans clas-
sification. Despite being a non-adaptive kernel, KTESN shows a competitive
performance even when the characteristics of the tree population change dras-
tically with respect to previous application (smaller outdegree and size, deeper
structures, reduced sample size). In particular on the Cystic dataset KTESN is
capable of considerably increasing the accuracy with respect to a TreeEsn model,
again using as little as 10 reservoir units. KTESN accuracy is again competitive,
if not superior, to that of syntactic kernels of superlinear complexity such as ST,
SST and the Linkage (LK) kernel.

Dataset KTESN KTESN TreeESN ST SST LK
(N =10) | (N =25)
Leukemia 0.9762 0.9769 0.9710 0.9607 | 0.9710 | 0.9627
Cystic 0.8356 0.8385 0.7719 0.7983 | 0.8500 | 0.7754

Table 2: Results on the Glycans datasets: average AUC on the 10-folds; KTESN
results are averaged on the 5 random reservoirs.
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4 Conclusion

We have introduced a tree kernel exploiting the topographical organization of
the reservoir activation space induced by the recursive encoding and contractive
properties of a TreeESN. The proposed kernel maps each tree substructure to
an N-dimensional vector of reservoir activations, allowing to measure the sim-
ilarity between two trees in terms of distances between the reservoir activation
vectors of the nodes. A preliminary experimental assessment shows that the
proposed approach compares favourably with adaptive and syntactic tree ker-
nels in literature on heterogeneous tree classification tasks. In particular, it can
effectively exploit the structural information captured by the dense encoding of
untrained reservoirs comprising only 10 sparsely connected neurons. Conversely,
activation-based kernels in literature, both for recurrent neural networks and
generative tree Markov models, require a number of units that is over 40 times
larger and have considerably higher computational requirements both for model
training and for computing tree encoding. Future work will deepen the ex-
perimental analysis by exploring additional contractive random tree encodings
and associated kernels, such as using the root node encoding as an explicit fea-
ture representation, and will characterize the computational complexity of the
approach. On a more theoretical side, we intend to explore the relationship
between reservoir activation kernels and the family of Binet-Cauchy kernels on
dynamical systems [9].
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