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Abstract. In this paper, we examine a simple approach to zero-shot multi-label
text classification, i.e., to the problem of predicting multiple, possibly previously
unseen labels for a document. In particular, we propose to use a semantic embed-
ding of label and document words and base the prediction of previously unseen
labels on the similarity between the label name and the document words in this em-
bedding. Experiments on three textual datasets across various domains show that
even such a simple technique yields considerable performance improvements over
a simple uninformed baseline.

1 Introduction

Multi-label text classification is the problem of assigning multiple labels or keywords
to a given document. In many such tasks, such as news classification, the number
of possible categories is unlimited and dynamically changing so that new categories
will be added over time. In such cases we may not have training data for the newly
introduced categories, but may still want to be able to classify documents into these
categories. Zero-shot learning attempts to deal with such situations.

In this paper, we investigate simple unsupervised algorithms that classify documents
without the use of any training data for learning the classifier. These unsupervised
algorithms can then be used in the zero-shot setting for predicting the unseen labels,
while the seen labels are predicted using existing state-of-the-art supervised approaches.
The key idea is to base these predictions on the semantic similarity of the document text
to the label, which can be computed based on semantic word embeddings.

The paper is organised as follows. Section 2 gives a brief introduction into the
problems of multi-label text classification and zero-shot learning. Section 3 describes
the similarity-based algorithms that we study in this paper in more detail. Section 5
shows the results of their experimental evaluation before we conclude in Section 6.

2 Preliminaries

A text document xi is given as a sequence of words 〈w1
i , w

2
i , . . . , w

|xi|
i 〉 from a vo-

cabulary wji ∈ V = {1, 2, . . . , |V|} of words. In multi-label classification (MLC),
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each document xi is associated with a subset of labels Yi ⊆ Y of the set of possible
labels Y = {1, 2, . . .}. The task is to learn these associations based on a training set
Tn = {(x1, Y1), (x1, Yi), . . . , (xn, Yn)} in order to predict the unknown label sets on a
test set Tm = {(xn+1, Yn+1), . . . , (xn+m, Yn+m)}. Usually, it is assumed that the set
of possible labels Y is fixed and that all labels in the test set already appeared at least
once in the training set, i.e., Yk =

⋃n
i=1 Yi,Ym =

⋃n+m
i=n+1 Yi, Y = Yk ⊃ Ym.

There are many learning algorithms for multi-label classification [3, 10]. In this
paper, since our concern is on predicting unknown labels for which existing approaches
do not offer solutions, we use the very straight-forward binary relevance decomposition
(BR) of the original problem as our baseline multi-label method. Essentially, BR learns
a separate classifier for each label, which predicts whether the label should or should
not be predicted for a given instance x.

In zero-shot learning (ZSL), it is assumed that new, unknown labels may appear
during query-time, i.e., the assumption Ym ⊂ Yk no longer holds, and a non-empty set
of unknown labels Yu = Ym\Yk exists. Moreover, we assume in our particular setting
that each label l ∈ Y has a name given by a sequence of words λl = 〈w1

λl
, . . . , w

|λl|
λl
〉.

ZSL has so far been primarily investigated in computer vision. A common solu-
tion to ZSL is to represent labels by attributes which are shared by known as well as
unknown labels [1, 8]. For instance, Lampert et al. [4] use semantic features of visual
objects in a visual object classification task. Recent approaches for object recognition
also use textual information such as the labels’ names. For example, Frome et al. [2]
learn d-dimensional word representation from large textual corpora such as Wikipedia
and then use the same embedding space for representing the images. Recently, Nam
et al. [7] proposed an approach for text classification which produces a joint embedding
of words, documents, labels and associated (longer) label descriptions.

A common limitation for most techniques relying on (joint) embeddings is the large
amount of training data necessary. In contrast, in this paper we investigate the potential
of simple techniques that solely rely on estimating the semantic similarity between a la-
bel and the given documents. Thus, these techniques do not use any training documents
at all, and may also be used to complement any given multi-label text classification
algorithm.

3 Similarity-Based Zero-Shot Prediction

Label Presence. The most straight-forward approach to predict a label l as relevant
given a document xi is to check whether the label name λl appears in the document.
More formally, we include l in the set of predicted labels Ŷ for xi if for any j =
1, . . . , |xi| − |λl| it holds that

〈wji , w
j+1
i , . . . , w

j+|λl|
i 〉 = 〈w1

λl
, . . . , w

|λl|
λl
〉 (1)

This simple unsupervised approach may work well in the case when the labels are
very specific and rather short entities (e.g., “iphone”, “European Investment Bank”). In
such cases, the documents will generally contain the label in the text, and ideally not
many non-relevant document would be covered. However, if the labels are very gen-
eral, e.g., “dollar”, “cough”, it is very likely that they appear in too many documents.
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Moreover, for very long and descriptive label names such as “fever and other physio-
logic disturbances of temperature regulation‘” it is unlikely that they will occur exactly
in this form in the text of the relevant documents (label names from datasets in Sec. 4).

Label Word Similarity. To circumvent this problem, we propose to relax the strict
equation in (1) and substitute it by a more general formulation making use of a textual
similarity measure. We set label l as true if

t ≤ max
1≤c≤cmax

max
1≤j≤|xi|−c

σ(〈wji , w
j+1
i , . . . , wj+ci 〉, 〈w1

λl
, . . . , w

|λl|
λl
〉) (2)

for a user-defined threshold t and a maximum window or n-gram size cmax. Obviously,
(1) would be obtained by setting cmax = |λl|, t = 1, and σ(w1,w2) = 1 if w1 = w2

otherwise 0.

Semantic Similarity. Obviously, the performance of (2) highly depends on the proper
choice of the similarity function. Recently, methods such as skip-gram [6], which com-
pute low-dimensional continuous vector representations of words and phrases based on
word co-occurrences in large corpora, became very popular. These so-called word em-
beddings are capable of capturing syntactic and semantic characteristics of the words
and were shown to be very effective on word similarity tasks. Moreover, it is suggested
that a non-obvious degree of language understanding can be obtained by using basic
mathematical operations on the word vector space. For instance, it was found that re-
lations such as vec(“Germany”) + vec(“capital”) ≈ vec(“Berlin”) hold very often.
Relying on these compositionality characteristic of word embeddings, we obtain the
embedding of a label by adding up the embedding of their constituent words. We also
include compound words such as “New York” in our vocabulary (cf. Sec. 4) instead of
using the composed variant. The similarity between two word sequences is then given
by the Cosine similarity σ(w1,w2) =

vec(w1)
T ·vec(w2)

|vec(w1)|·|vec(w2)| with σ(w) ∈ Rd as either the
embedding of a compound word or the sum of the embeddings of the words in w, and
with d as the dimensionality of the embedding space.

Combination with Supervised Multi-Label Algorithms. The above algorithms are meant
to complement conventional supervised multi-label algorithms. For the purpose of the
evaluation in this paper, the simple but effective BR technique (Sec. 2) is used for mak-
ing the predictions of the known labels, whereas the techniques discussed above are
used for making predictions for unknown labels (i.e., labels that have not been seen in
training).

4 Experimental Setup

We had access to the full texts of three MLC datasets: The REUTERS corpus1 of news
wire articles was split into 7769 training and 3019 test examples and contains 90 labels

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
readme.txt
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Table 1: Zero-shot results of the proposed method on the three datasets.
Dataset REUTERS MEDICAL EURLEX
Threshold 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1
Ma. Prec. .2228 .3713 .4708 .4706 .0494 .1513 .2244 .2031 .0368 .0624 .1020 .1748
Ma. Rec. .6654 .5633 .5181 .5169 .7842 .5205 .2178 .2201 .7520 .6973 .5191 .2803
Ma. F1 .2667 .3805 .4378 .4365 .0816 .1826 .1980 .2102 .0577 .0826 .1176 .1886

with an average of 1.23 labels assigned to each document. Acronym label names were
expanded, such as “bop” to “balance of payments”. MEDICAL consists of 1953 radiol-
ogy reports associated to 45 diagnoses (∼1.24 per doc.) [9]. The EURLEX [5] is a col-
lection of legal documents about the European Union associated to 201 subject matters
(∼2.21 per doc.). All used texts were converted to lowercase and tokenized. Numbers
were converted to the symbol “0”. For the MLC datasets, we additionally removed stop
words. For MEDICAL and EURLEX, label names range from short and general (“cough”,
“coffee’) to long and specific (“fever and other physiologic disturbances of temperature
regulation”, “quantitative restrictions and measures of equivalent effect”).

The skip-gram word embeddings used for our experiments have been learnt with
word2vec2 using the English Wikipedia as the raw text corpus. The final vocabulary
consisted of ∼2.5 million entries. The BR baseline was trained with LibLinear3 on TF-
IDF bag-of-words vectors. We used the original train-test split for REUTERS and three-
fold and ten-fold cross validation for MEDICAL and EURLEX, respectively. Parameters
t = 0.9 and cmax = 3 were used for REUTERS and MEDICAL and cmax = 1 for
EURLEX.

For evaluating the different approaches we focus on the macro-averaged variants of
recall, precision and the F1-measure [cf. 10]. These metrics give equal weight to all
labels whereas micro-averaged measures are dominated by the most frequent labels. As
unseen labels generally are rare labels, we consider the macro-averaged measures to
be a better indicator for the performance in the analyzed setting. More specifically, we
compute the measures as

Ma. Prec.: 1
|Y|

∑|Y|
l=1

∑m
i=n+1|Yi∩Ŷi∩l|∑m
i=n+1|∩Yi∩l| Ma. Rec.: 1

|Y|
∑|Y|
l=1

∑m
i=n+1|Yi∩Ŷi∩l|∑m

i=n+1|Yi∩l|
Macro F1 uses the recall and precision values for each label to compute the harmonic
means.

5 Experimental Results

In our experiments we analyze the case where all labels are known (MLC) to the case
were all labels are unknown during classification (full ZSL). More specifically, we or-
dered the labels by their ascending frequency and switched their training information
off one by one. For predicting such ignored labels, we use the output of our proposed
ZSL approach. We compare to the case where the learned classifier predicts these labels
as false since no positive examples were ever seen.

2https://code.google.com/p/word2vec/. Dimensionality of 300, hierarchical softmax, neg-
ative sampling, window size of 10 and probability of 10−4 of subsampling frequent words was used. Phrases
were considered as one token if they appeared as wiki links in the raw text.

3https://www.csie.ntu.edu.tw/˜cjlin/liblinear/. Default parameters were used.
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Fig. 1: Removal of labels for REUTERS. The x-axis indicates the number of switched
off labels, the y-axis the corresponding measure.

Table 1 shows the ZSL performance on the three datasets w.r.t. to the chosen thresh-
old parameter. As expected, precision generally decreases and recall increases with
lower thresholds. However, there are some exceptions and remarkable differences be-
tween the datasets. For instance, macro precision drops for MEDICAL for t = 1. This
can be attributed to the fact that MEDICAL contains many infrequent labels with long
names, denoting very specific diagnosis such as “spina bifida without mention of hydro-
cephalus, unspecified region”.

The results for REUTERS are shown in Fig. 1. We can see that our proposed method
of replacing the predictions clearly outperforms ignoring the labels for any number
of affected labels on the macro-averaged metrics. Interestingly, the highest values for
precision, recall and F1 are found when a considerable number of rare labels are miss-
ing. This result suggests that it might be more beneficial in some cases to abstain from
learning models for some rare labels even if training data is available.

The results in micro-averaged precision (not shown) are quite similar except that
here, as expected, precision values values suffer considerably when the most common
labels are removed, even more so for the proposed approach. However, the advantage
in recall is able to make up and result in an overall gain in terms of F1.

The results for MEDICAL and EURLEX are quite similar, we only show the macro-
averaged F1 values in Fig. 2. Again, we can observe a consistent improvement of
the proposed technique over the baseline on these datasets, too, although it is not as
pronounced as for REUTERS. This can be attributed to having longer and more complex
labels as compared to the REUTERS dataset (cf. Sec. 4). These long labels are generally
not part of the vocabulary and their vectors have to be created by composition.

We obtained similar results if we remove the labels in descending frequency. In
fact, the curves start from the same point at x = 0 but are rotated by 180◦ since label-
wise metrics are removed from the average in reversed order (not shown due to space
constraints).

6 Conclusion

In this paper, we investigated a simple and straight-forward approach for complement-
ing conventional multi-label text classification algorithms with the capability of making
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Fig. 2: Removal of labels for MEDICAL (left) and EURLEX (right).

predictions on labels that have been unseen during training time. The idea is to use word
embeddings to compute a semantic similarity between the label and the document text.
Although the approach is quite limited and cannot be expected to yield the same per-
formance as a supervised approach, the results show that despite its simplicity, it can
successfully complement multi-label classifiers with such functionality without addi-
tional training.
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