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Abstract. In this paper we propose an empirical analysis of deep recur-
rent neural networks (RNNs) with stacked layers. The analysis aims at the
study and proposal of approaches to develop and enhance multiple time-
scale and hierarchical dynamics in deep recurrent architectures, within the
efficient Reservoir Computing (RC) approach for RNN modeling. Results
point out the actual relevance of layering and RC parameters aspects on
the diversification of temporal representations in deep recurrent models.

1 Introduction

Deep learning models have progressively attracted the interest of the Machine
Learning community for their ability to learn data representations at different
levels of abstraction. Focusing on the neuro-computing area, the recent extension
of deep neural architectures to the case of Recurrent Neural Networks (RNNs)
has gained a growing interest [1, 2, 3, 4], in particular in relation to the possi-
bility of developing a hierarchical processing of temporal data. In this concern,
some works aimed at achieving multiple time-scales dynamics in a stacked deep
RNN architecture by progressively sub-sampling the input to the higher layers
[3], forcing the different layers to operate at different frequencies, or by learning
the weights of all the layers in the stack, which is an extremely time consuming
process even using GPUs and can require ad-hoc incremental training strategies
in order to be effective [4]. However, some observations and intuitions present
in literature deserve further research and critical assessments. In particular, the
observation that stacking RNNs layers inherently creates different time scales
at different layers [4, 2], and therefore a hierarchical representation of temporal
information per se, is worth to be investigated and analyzed.

In this paper we propose different approaches to achieve a hierarchy in time
scales representation by efficient deep recurrent models. In this concern, Reser-
voir Computing (RC) [5] represents a state-of-the-art approach for extremely
efficient RNN modeling, yielding to the possibility of investigating the influence
of architectural aspects on the time-scale dynamics differentiation separately
from learning. Previous works on hierarchical organizations of RC networks
mainly focus on ad-hoc architectures of trained modules for multiple temporal
feature discovery [5], but still lack in a general view over the effective potentiality
and emerging properties of deep architectures of layered reservoirs. Our analysis
on the one hand aims at providing an analytic tool for investigating the effects
of layering on temporal dynamics representations, and on the other hand paves
the way to the development of new models by exploiting the advantages of the
stacked deep recurrent architectures in representing different time-scales along
with the extreme efficiency of RC training algorithms.
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2 Deep Echo State Networks

Within the RC framework, we focus on Echo State Networks (ESNs) [6]. ESNs
implement discrete-time dynamical systems, by means of an untrained recurrent
reservoir that provides a Markovian representation of the input history [7], and
by a trained linear readout. We consider the Leaky Integration ESN (LI-ESN)
[8], a variant of the ESN in which the state is updated as x(t) = (1 — a)x(t —
1) + atanh(Wi,u(t) + Wx(t — 1)), where u(t) and x(t) are respectively the
input and state at time t, W;, is the input-to-reservoir weight matrix, W is
the recurrent weight matrix and a € [0, 1] is the leaky parameter. The reservoir
is left untrained after initialization according to the echo state property (ESP)
[6]. We focus our analysis on two key reservoir hyper-parameters: the spectral
radius (i.e. the largest eigenvalue in absolute value) p of the recurrent weight
matrix, and the leaky parameter a. The value of p is related to the variable
memory length and the degree of contractivity of reservoir dynamics [7], with
larger values of p resulting in longer memory length. It is also related to the ESP
for valid ESN initialization, according to which the condition p < 1 is typically
adopted. The value of a is related to the speed of reservoir dynamics in response
to the input, with larger values of a resulting in a faster reaction to the input
[8, 5]. The readout computes the output as a linear combination of the reservoir
state, and is typically trained by direct methods. See [5, 6, 7] for details on RC.

In this paper we propose the study of deep RC architectures in which multiple
reservoir layers are stacked one on top of each other. The main model that we
consider is a straight stack of reservoirs, called deepESN and shown in Fig 1(a).
In a deepESN, the first layer is fed by the external input and operates like the
reservoir of a shallow ESN, whereas each successive layer is fed by the output of
the previous one. The state transition function of deepESNs can be expressed
as: xO(t) = (1 —aD)xO(t —-1)+a® tanh(WEf?i(l) +WOxO(t —1)), where the
superscript (1) is used when referring to the reservoir state, parameters and in-
put at layer [, with i () = u(t) and i) (t) = x=V(t), for I > 0. The possible
relevance of layering in deepESNSs is investigated by considering a RC network
containing sub-reservoirs that are all fed only by the input and are not orga-
nized in a stack. The resulting architecture is called here groupedESN, shown
in Fig.1(b). Finally, the importance of layering with respect to the construction
of a progressively more abstract encoding of the input history is studied by con-
sidering a deepESN in which the input is provided to every layer. The resulting
model is called deepESN Input to All (deepESN-TA), shown in Fig.1(c).

In the following we investigate possible strategies aimed at driving the emer-
gence of different time-scales dynamics through the different layers of a deep
recurrent architecture. Our first proposal consists in imposing by design a state
dynamics differentiation among the layers, by setting different values of p and a
at different layers. Varying the values of p implies a variability of contractivity
and memory length among the state dynamics of different layers. Using differ-
ent values of a implies a differentiation of state dynamics speed in the different
layers. Observe that the advantage of having RNN units with different leaky
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Fig. 1: Deep RC architectures: (a) deepESN, (b) groupedESN, (c) deepESN-IA.

parameters in order to achieve multiple time-scales dynamics has already been
discussed in pioneering works of the 1980s [9, 10]. Our second proposal consists
in using an efficient unsupervised layer-wise training of reservoir units by means
of Intrinsic Plasticity (IP) [11]. The IP adaptation rule aims at maximizing the
entropy of each layer’s output by a gradient descent learning that adapts the
gain and bias parameters of the reservoir units activation function.

3 Experiments

To investigate the extent of time-scales differentiation among the different layers
similarly to [4], but avoiding biases towards specific applications, we constructed
a time-scales dataset containing 2 random input sequences. The first unperturbed
sequence S7 contains 5000 elements uniformly drawn from an alphabet of 10 ele-
ments, represented by a 1-of-10 binary encoding. The second perturbed sequence
Sy differs from S; only at step 100, where a typo is inserted. We ran the same
network on S7 and S, and collected the obtained states. Then we evaluated for
each layer the Euclidean distance between the states corresponding to S; and
Ss as a function of time, to see how long the perturbation affects each layer. We
considered deep RC architectures with 12 layers of 10 units each.

In Fig. 2 we present a selection of results representative of the cases of in-
terest, also considering that the limited variability typical of the contractive RC
systems does not significantly affects the results under a qualitative point of view.
Fig. 2(a), 2(b) and 2(c) show the results achieved with deepESN, groupedESN
and deepESN-TA, with p = 0.9 and a = 0.55 fixed for every layer. Continuous
blue lines refer to the different layers of the deep architecture, with darker colors
corresponding to higher layers. For comparison, the red dotted line refers to a
shallow ESN with the same values for p and a, and reservoir size of 120 (the total
number of units in the deep networks). The intrinsic differentiation among the
time-scales dynamics at the different layers of a deepESN is shown in Fig. 2(a),
from which it is possible to observe that the effects of the input perturbation
last longer for higher layers in the stack. Such differentiation is indeed related
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Fig. 2: Distance between perturbed and unperturbed states in (a) deepESN,

(b) groupedESN, (c) deepESN-TA, (d) deepESN varying a, (e) groupedESN

varying a, (f) deepESN with IP. Continuous lines correspond to layers in deep
RC networks, dotted lines correspond to shallow ESN counterparts (see text).

to the layered deep architecture, as it is strongly attenuated when layering is
removed from the architectural design (groupedESN, see Fig. 2(b)) or when the
input is provided to each layer (deepESN-IA, see Fig. 2(c)). Fig. 2(b) shows
the intrinsic variability that can be already present in reservoirs with the same
hyper-parametrization when they are not organized in a stack. In this case all the
time-scales dynamics are dominated by the one of a shallow ESN with the same
total number of units and hyper-parametrization (red dotted line). A compari-
son between the behaviors of deepESN (Fig. 2(a)) and deepESN-IA (Fig. 2(c)),
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brings out that having deeper layers at increasing distance from the input is a
key architectural factor for obtaining a time-scales separation. However, it is
worth to observe that the inherent differentiation among layers dynamics in a
deepESN is quite narrow, with the range of emerging time-scales limited in a
small tube around the one obtained with a shallow ESN. Such differentiation can
be emphasized within the efficient RC approach by resorting to the strategies
proposed in Section 2. Fig. 2(d) shows the results obtained by a deepESN with
fixed p = 0.9 and decreasing leaky parameter a for increasing layer depth, from
1 to 0.1. In the same figure, the red dotted line corresponds to a shallow ESN
with p = 0.9,a = 0.55 (mean value of a among the deepESN layers), whereas the
black point-dotted line corresponds to a shallow ESN with p = 0.9,a = 0.1 (value
of a at the deepest layer). As can be seen, the variability of the leaky parameter
has a great impact on the separation among the emerging time-scales dynamics,
showing an ordered differentiation as in the case of deepESN, but with a much
wider extent, reaching even longer times-scales than the shallow ESN with the
slowest dynamics. This characterization is a result of the interplay between lay-
ering and leaky integration variability, and indeed it is lost when non-stacked
architectures are considered. This can be observed in Fig. 2(e), corresponding
to a groupedESN with different values of a in different sub-reservoirs. Therein,
the overlapping among curves (highlighted in the zoom) shows that the previous
order through layers is lost. In addition, it is possible to observe that all the
emerging time-scales dynamics in groupedESN are generally below the one ob-
tained by the slower shallow ESN. Similar results (not shown here for brevity)
can be obtained for constant a and variable p, though the effect of differentia-
tion in this case is less significant. The result obtained by using IP is shown in
Fig. 2(f), corresponding to a deepESN with values of p = 0.9, a = 0.55 fixed for
all the layers, to which unsupervised IP training is applied. The red dotted line
in this case refers to a shallow ESN with the same hyper-parametrization and
after TP training. Comparing Fig. 2(f) with Fig. 2(a) it is possible to see the
great impact of IP learning on the differentiation among time-scales dynamics
of a deepESN, with the perturbation effect persisting in the step range ~ 150 -
~ 350. Also note that after IP training, the lines representing the dynamics of
the first deepESN layer and the shallow ESN one overlap in the plot.

Finally, out of the main scopes of this short paper, we have experimentally
assessed the effectiveness of the proposed approach on the memory capacity
(MC) task [12]. The task was implemented similarly to [11], using RC networks
with p = 0.9, a = 1, and averaging the results over 5 guesses. For 100 reservoir
units the results achieved by shallow ESNs without and with IP learning are
respectively 26.8 + 1.8 and 30.7 &+ 1.7 (in line with [11]). In the deep case, we
considered 10 layers of 10 units each, using the same fixed values of p and a, and
considering the concatenation of all the reservoirs in the stack as input for the
readout. Results showed that a great improvement on this task is obtained by
deepESN with IP learning, leading to a MC value of 50.7+1.8, which represents a
performance gain of more than 65% with respect to the shallow case, supporting
the potentiality of such approaches for future applications on learning tasks.
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4 Conclusions

In this paper we have presented an experimental analysis of deep recurrent ar-
chitectures, investigated by resorting to stacked RC networks. The introduction
of deep RC allowed us to investigate the intrinsic property of deep layered recur-
rent architectures in representing different time-scale dynamics, finding different
insights both in terms of architectural structure (input layer position) and in
terms of model parameters (leaky integrator effect enhanced by multi-layer ar-
chitecture). Moreover, the proposals made to enhance the time-scale hierarchical
differentiation among layers (using different leaky parameters or unsupervised IP
learning focused only the activation function parameters) allowed us to exploit
the efficiency of the RC framework, without resorting to a full RNN training (ex-
tended to all the units parameters). On the RC side, the proposed approaches
allow us to achieve a time-scale differentiation in the model that is higher with
respect to a standard ESN without a layered structure, and lead to explicitly
address the concept of including time data representation at different level of
abstraction inside the RC paradigm. The proposed analysis would finally sug-
gest the design of new learning models boosted by such enriched representation
of the input dynamics that could eventually result in a relevant breakthrough in
the area of efficiently learning from sequential and temporal data.
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