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Abstract. Supporting both accurate and reliable localization in critical
environments is key to increasing the potential of logistic mobile robots.
This paper presents a system for indoor robot localization based on Reser-
voir Computing from noisy radio signal strength index (RSSI) data gen-
erated by a network of sensors. The proposed approach is assessed under
different conditions in a real-world hospital environment. Experimental
results show that the resulting system represents a good trade-off between
localization performance and deployment complexity, with the ability to
recover from cases in which permanent changes in the environment affect
its generalization performance.

1 Introduction

While being the subject of considerable research interest in the last decade,
the problem of indoor localization is far from being solved. A number of recent
international competitions on this topic [1, 2, 3] have shown a state of the art that
is still heterogeneous, with solutions typically showing accuracy performance of
about 1 m of average localization error in practical applications.

Robotics has produced specific techniques that can be used to localize mo-
bile robots, e.g. based on cameras or laser range finders [4]. However, many
of those techniques have still limitations such as the necessity to localize the
robot on every start-up and reliability that is under the required level. For this
reason, the robots currently employed across busy manufacturing plants and
large hospitals still use localization approaches based on following painted lines
or detecting magnetic landmarks that must be previously installed on the floor.
The installation and maintenance costs, and the loss in flexibility - since these
robots can only navigate on pre-programmed paths - pose a serious obstacle to
a widespread use of logistic mobile robots.

∗This work is partially supported by the EU FP7 RUBICON project (contract n. 269914).
The authors would like to thank all the involved partners.
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In this paper we describe a system for indoor robot localization that exploits
an easy to install and cheap wireless sensor network: radio signal strength index
(RSSI) data are measured between a wireless device on a robot and a number of
other devices (anchors) placed on the walls of the environment. Data is analyzed
using Recurrent Neural Networks (RNNs), a class of learning models of consol-
idated use for the ability to capture dynamic knowledge from noisy streams of
temporal data. In particular, within the Reservoir Computing (RC) [5] frame-
work for RNN design, we take into consideration the Echo State Network (ESN)
[6] model, a state of the art approach for efficiently learning in temporal do-
mains. ESNs have proved to be particularly suitable for treating the noisy data
gathered from sensor devices, enabling intelligent sensor networks and resulting
in successful real-world applications in supervised computational tasks related to
ambient assisted living and human activity recognition (e.g. [7]) as well as robot
localization in realistic laboratory settings [8], as testified also by the recent
success of the RUBICON project [9].

The proposed solution is experimentally assessed on a wing of a pediatric
hospital. The results show the ability of our system to achieve a very good per-
formance in real-world conditions and to recover (by learning) from permanent
changes in the environment that could otherwise severely affect its operation
and/or may require costly ad-hoc re-calibrations of the localization system.

2 Indoor Robot Localization in Hospital by RC

ESNs implement discrete-time dynamical systems, being composed of a NR-
dimensional recurrent non-linear reservoir that provides the system with a mem-
ory on the input history, and of a NY -dimensional linear feed-forward readout

that computes the output. In this paper we use a variant of the standard ESN,
called Leaky Integrator ESN (LI-ESN) [10], which has proved to be particularly
suitable in dealing with the nature of input data originated from networks of sen-
sors [7]. At each time step t the NU -dimensional input u(t) is fed to the reservoir,

which computes the state as x(t) = (1−a)x(t−1)+a tanh(Winu(t)+Ŵx(t−1)),

where Win ∈ R
NR×NU is the input-to-reservoir weight matrix, Ŵ ∈ R

NR×NR is
the recurrent reservoir weight matrix and a ∈ [0, 1] is the leaking rate parameter.
The output at time step t is computed by the readout as y(t) = Woutx(t), where
Wout ∈ R

NY ×NR is the reservoir-to-readout weight matrix. The only trained
component in the LI-ESN architecture is the readout, typically by means of
pseudo-inversion or ridge regression. The parameters of the reservoir are left
untrained after initialization under the constraint of the echo state property
(ESP) [6]. In practical applications this results in a scaling of a randomly ini-

tialized Ŵ such that the spectral radius ρ of matrix (1 − a)I + aŴ satisfies
ρ < 1. Further details on reservoir properties can be found in [11, 5].

The system described in this paper takes advantage of the synergy of two
components: a primary (more costly) laser-based localization system and a sec-
ondary (cheaper) RC-based one. On the one hand, the RC-based system can
be used as a diagnostic tool for the laser-based one, e.g. by detecting problems
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due to interactions with people that could interfere with the laser range sensors,
and to re-initialize the primary location estimation whenever the robot must be
restarted. On the other hand, the laser-based system can be used as a teacher for
training the RC-based one whenever an update of the secondary localization sys-
tem is required. In particular, we exploit this strategy to perform a re-training
of the LI-ESN model in the case of permanent environmental changes.

A measurement campaign took place in a building of the Stella Maris pedi-
atric hospital in Pisa, involving a wing with two corridors. As sketched in Fig.1,
a small wireless sensor network (WSN) was installed, comprising 10 anchors
placed on the walls at ≈ 1.5 m of height, on alternate sides of the corridors (one
every ≈ 4.5 m), and a mote on the robot. RSSI data exchanged between the
mote and the anchors was collected at 2 Hz while the robot moved back and forth
along the corridors, following an indicative path shown in Fig.1. We considered

Fig. 1: A sketch of the considered hospital environment, WSN and robot path.

two experimental settings: a normal operation setting (NOS), corresponding to
the full operational case, and an environmental change setting (ECS) in which
a permanent modification to the environment affects the RSSI values and there-
fore presumably has a negative impact on the localization estimation provided
by the RC system, thus representing an interesting case for the assessment of
the recovery strategy based on re-training. To re-create these situations in a
repeatable manner, the ECS setting has been implemented by moving anchor
A5 behind the adjacent wall (see Fig.1), so that a section of the wall was in the
line of sight between the anchor and the robot’s mote. Note that, in particular,
in this case the presence of the wall contributes to strongly increasing the noise
in the RSSI signal between A5 and the robot mote. As a result of this pertur-
bation, data coming from sensor A5 is considerably different between the NOS
and the ECS cases. This aspect is even more relevant as anchor A5 is placed

73

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



in a crucial position in the map, corresponding to the intersection between two
corridors where the robot is required to turn, thereby making the ECS settings
particularly challenging under the localization estimation point of view. In total
we collected a robot localization dataset1 containing 37 sequences pertaining to
different experimental conditions, resulting in the definition of 2 regression tasks,
in which at each time step the input is represented by the 10 RSSI signals and
the target is the (X,Y) coordinates provided by the laser-based localization sys-
tem on the robot. In particular, the NOS task contained 17 sequences, whereas
the ECS task contained 20 sequences.

3 Experimental Results

For each task, the predictive performance of the RC localization system in
terms of error in the Euclidean distance (ED) of the localization estimation pro-
vided by the LI-ESN, was evaluated on a separate external test set, comprising
≈ 25% of the available data. We considered LI-ESNs with reservoir size NR ∈
{10, 50, 100, 300, 500}, 10% of connectivity, leaky parameter a ∈ {0.1, 0.5, 1},

and with values in Win and Ŵ chosen within an alphabet of 16 values in the
range [−0.4, 0.4] (as in [7]). For each reservoir hyper-parametrization, 5 guesses
were independently generated, and the results were averaged over such guesses.
The readout was trained by pseudo-inversion and ridge regression with regular-
ization parameter λr ∈ {10−4, 10−3, 10−2, 10−1, 5 10−1, 1, 5, 10, 102, 103}. Reser-
voir hyper-parametrization and readout regularization were selected by a process
of holdout model selection on a validation set (≈ 25% of the training set size).

A very good generalization performance is obtained by the RC system on the
NOS task, indeed the mean test ED error achieved by the LI-ESNs on this task is
36.2 (±4.8) cm. Note that, although the indicative path of the robot movements
is given, the localization system is of general applicability, as it does not include
any explicit knowledge about the details of the specific instance considered, e.g.
the path followed or the robot speed.

Validation Test
LI-ESN before re-training 42.0(±10.9) 208.8(±50.6)
LI-ESN after re-training 78.8(±5.4) 77.7(±10.2)

Table 1: Mean ED error and std (in cm) achieved by LI-ESNs on validation
(NOS/ECS task before/after re-training) and test sets of the ECS task.

The deterioration of the RC localization system due to environmental changes
is assessed by evaluating the performance on the test set of the ECS task achieved
by the LI-ESNs trained and selected on the NOS task. The effectiveness of the
subsequent re-training process is then assessed by evaluating the performance
obtained by LI-ESNs on the ECS task, running a model selection procedure
analogous to the NOS case. Tab.1 reports the performance achieved by the

1The dataset is available at http://fp7rubicon.eu/uploads/HospitalWSN/robot loc SM.zip.

74

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



RC system on the ECS task before and after re-training. As it can be seen, the
mean test ED error obtained by the RC system before re-training is 208.8(±50.6)
cm, whereas after re-calibration, the mean test ED error is 77.7(±10.2) cm,
which represents a very good value also considering the specific difficulties that
characterize the ECS conditions. The effectiveness of the re-training strategy
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Fig. 2: Reference laser-based and RC estimated localization before and after
re-calibration for a test trajectory under ECS conditions.

is also shown in Fig.2, which compares the target laser-based localization with
the estimation provided by the RC system before and after the re-training on
a test sequence of the ECS task. As can be seen, the localization estimation
before retraining is mostly perturbed in a part of the robot trajectory that is
close to the perturbed sensor, whereas the estimation provided by the re-trained
RC system is much closer to the reference laser-based localization.

4 Conclusions

In this paper we have presented a system for indoor robot localization, exploiting
the ability of RC to efficiently learn from noisy RSSI data generated by a WSN.
The effectiveness of our approach has been assessed in a real-world hospital build-
ing, under different conditions. Results show a good performance in comparison
to reference laser-based localization system, with a mean test error of 36.2 cm
in normal operational conditions, which compares well with typical literature
results (although still heterogeneous to have a clear reference) with localization
errors roughly close to 1 m. Experimental results also showed the ability of our
system to recover from permanent changes in the environment by a re-training
strategy. In the considered real-world scenario, such strategy allowed the restora-
tion a good localization performance also in the case of a severely compromising
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environmental modification, with a performance improvement that can be quan-
tified in a reduction of the test error from more than 2 m (before re-training) to
77.7 cm (after re-training).

The proposed system represents an advantageous trade-off between perfor-
mance and complexity of installation, maintenance and re-calibration. In par-
ticular, the use of learning allows the system to be flexible and easily re-adapted
after environment perturbations, avoiding the need to start from scratch the
costly design of pre-programmed rigid localization systems. The general appli-
cability of the learning approach also allows us to envisage the integration with
other sensor inputs, e.g. wifi network RSSI, GSM RSSI or IMU magnetometers,
thus further increasing reliability and accuracy. Moreover, the proposed system
allows a fruitful co-operation of laser-based and RC-based localization systems
for diagnostic and training purposes. Overall, the robustness of the resulting
system would eliminate the requirement for modifications to the environment
(e.g. to install magnetic landmarks) and reduces the need for pre-programming
robot tasks, thus ultimately leading to fleets of logistic mobile robots that are
more flexible and cheaper to install and operate.
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