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Abstract. We introduce a Bayesian mixture of spatial spline regres-
sions with mixed-effects (BMSSR) for density estimation and model-based
clustering of spatial functional data. The model, through its Bayesian for-
mulation, allows to integrate possible prior knowledge on the data struc-
ture and constitute a good alternative to a recent mixture of spatial spline
regressions model estimated in a maximum likelihood framework via the
expectation-maximization (EM) algorithm. The Bayesian model inference
is performed by Markov Chain Monte Carlo (MCMC) sampling. We derive
a Gibbs sampler to infer the model and apply it on simulated surfaces and
a real problem of handwritten digit recognition using the MNIST data.

1 Introduction

Functional data analysis (FDA) [1] is the paradigm of data analysis in which
the individuals are functions (e.g., curves or surfaces) rather than vectors of
reduced dimension. Most of the classical analyses directly consider the data to
be analyzed as vectors. However, in many areas of application, the analyzed data
are often available in the form of (discretized) values of functions or curves (e.g.,
times series, waveforms, etc) and surfaces (2D-images, spatio-temporal data,
etc) which makes them very structured. This “functional” aspect of the data
adds additional difficulties in the the analysis compared to the case of a classical
multivariate analysis. In this framework, several models have been introduced to
model univariate and multivariate functional data for clustering or classification.
Among these models, one distinguishes those based on the finite mixture model
[2], on which we focus in this paper.

These models have however mainly focused on the study of univariate or mul-
tivariate functions. For the case of spatial functional data, [3, 4, 5, 6] proposed
methods to deal with surfaces. In particular, the recent approach proposed by
[6] for clustering and classification of surfaces is based on the regression spatial
spline regression as in [5] in a mixture of linear mixed-effects model framework
as in [7]. [6] indeed extended the functional data analysis framework for univari-
ate functions to the analysis of spatial functions (i.e. surfaces) by introducing a
spatial spline regression (SSR) model and a mixture of spatial spline regressions
(MSSR) model, to respectively model homogeneous surfaces and heterogeneous
surfaces with a clustering structure. The SSR model with mixed-effects is tai-
lored to spatial regression data with both fixed-effects and random-effects. The
mixture of spatial spline regression (MSSR) is dedicated to surface clustering, as
in [8] for curve clustering, while the mixture of spatial spline regression discrim-
inant analysis (MSSR-DA) is dedicated to curve discrimination. The usual used
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tool for model estimation is maximum likelihood estimation (MLE) by using the
expectation-maximization (EM) algorithm [9, 10].

In this paper, we present a probabilistic Bayesian formulation to model spa-
tial functional data by extending the approaches of [6] and apply the proposal to
surface approximation and clustering. The model is also related to the random-
effects mixture model of [11] in which we explicitly add mixed-effects and derive
it for spatial functional data by using the Nodal basis functions (NBFs). The
NBFs [3] used in [4, 5, 6] represent an extension of the univariate B-spline bases
to bivariate surfaces. We thus introduce the Bayesian mixtures of SSR (BMSSR)
for fitting populations of heterogeneous surfaces organized in groups. The model
is applied for fitting a population of homogeneous surfaces and the model-based
surface clustering by considering handwritten digits from the MNIST data [12].

This paper is organized as follows. Section 2 presents the Bayesian mixture
of spatial spline regressions (BMSSR) model and its inference technique using
Gibbs sampling. Then, in section 3, we apply the proposed model on simulated
surfaces and on a real handwritten digit recognition problem. Finally, in Section
4, we draw some conclusions and mention some future work.

2 Bayesian mixture spatial spline regressions with mixed-
effects (BMSSR)

We introduce a Bayesian probabilistic formulation to the mixture of spatial spline
regressions with mixed-effects presented in [6] in a maximum likelihood context.
The proposed model is thus the Bayesian mixture of spatial spline regressions
with mixed-effects (BMSSR).

2.1 The model

Consider that there areK sub-populations in the set of n surfacesY = (y1, . . . ,yn).
The proposed BMSSR model has the following stochastic representation. Con-
ditional on component k, the individual yi is modeled by a BSSR model as:

yi = Si(βk + bik) + eik (1)

where the spatial regression matrix Si is computed from the Nodal basis func-
tions. Introduced by [3], the idea of Nodal basis functions (NBFs) extends the
use of B-splines for univariate function approximation [1], to the approximation
of surfaces. For a fixed number of basis functions d, defined on a regular grid
with regularly spaced points c(l) (l = 1, . . . , d) of the domain we are working
on, with d defined as d = d1d2 where d1 and d2 are respectively the columns
and rows number of nodes, the ith surface can be approximated using piece-
wise linear Lagrangian triangular finite element NBFs constructed as in [5, 6]
s(x, c, δ1, δ2) (the shape parameters δ1 and δ2 being constant). An example of
a NBF function defined on the rectangular domain (x1, x2) ∈ [−1, 1] × [−1, 1]
with a single node c = (0, 0) and δ1 = δ2 = 1 is presented in the Figure 1.
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Figure 1: Nodal basis function s(x, c, δ1, δ2), where c = (0, 0) and δ1 = δ2 = 1.

Thus, a K component Bayesian mixture of spatial spline regression models
with mixed-effects (BMSSR) has the following density:

f(yi|Si;Ψ ) =

K
∑

k=1

πk N
(

yi;Si(βk + bik), σ
2
kImi

)

(2)

where the parameter vector of the model is given by

Ψ = (π1, . . . , πK−1,β
T
1 , . . . ,β

T
K ,B

T
1 , . . . ,B

T
K , σ

2
1 , . . . , σ

2
K , ξ

2
1 , . . . , ξ

2
K)T ,

Bk = (bT
1k, . . . ,b

T
nk)

T being the vector of the random-effect coefficients of the
kth BSSR component. The BMSSR model is indeed composed of Bayesian
Spatial Spline Regression components, each of them has parameters Ψk =
(βT

k ,B
T
k , σ

2
k, ξ

2
k)

T and a mixing proportion parameter πk. In this Bayesian
setting, we therefore just need to specify the prior distribution on the mix-
ing proportions π = (π1, . . . , πK) which follow the Multinomial distribution in
the generative model of the non-Bayesian mixture. We use a conjugate prior
as for the other parameters, thats is, a Dirichlet prior with hyper-parameters
α = (α1, . . . , αK). The hierarchical prior from for the BMSSR model parame-
ters is therefore given by:

π ∼ Dir(α1, . . . , αK)
βk ∼ N (βk|μ0,Σ0)
bik|ξ2k ∼ N (bik|0d, ξ

2
kId)

ξ2k ∼ IG(ξ2k|a0, b0)
σ2
k ∼ IG(σ2

k|g0, h0).

(3)

2.2 Bayesian inference using Gibbs sampling

In this section we derive the Gibbs sampler to infer the model parameters. The
pseudo-code 1 summarizes the Gibbs of the proposed BMSSR model and specifies
the full conditional distributions.
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Algorithm 1 Gibbs sampler for the BMSSR model

Inputs: The observations Y = (y1, . . . ,yn) and the spatial spline regression matrices
(S1, . . . ,Sn) and the number of mixture components K
Initialize: the hyper-parameters (α,μ0,Σ0, g0, h0, a0, b0) and the parameters
(π,β,B, ξ2,σ2)
for t = 1 to #Gibbs samples do

for i = 1 to n do
1. The allocation variables: z

(t)
i ∼ Mult(1; τ

(t)
i1 , . . . , τ

(t)
iK ) with the posterior probabili-

ties τ
(t)
ik calculated according to τ

(t)
ik =

π
(t)
k

N
(
yi|Si(β

(t)
k

+b
(t)
ik

),σ2(t)
k

Imi

)

∑K
l=1

π
(t)
l

N
(
yi|Si(β

(t)
l

+b
(t)
il

),σ2(t)
l

Imi

)

end for
2. The mixing proportions: π(t) ∼ Dir(α1 + n

(t)
1 , . . . , αK + n

(t)
K ) with n

(t)
k =

∑n
i=1 z

(t)
ik

for k = 1 to K do

3. The random-effects variance: ξ2k
(t) ∼ IG

(

a0 + n
2
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(t−1)
ik

T
b
(t−1)
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2

)

4. Sample the noise variance:

σ2k
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2
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5. The fixed-effects coefficient vector: β
(t)
k ∼ N (ν

(t)
0 ,V
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for i = 1 to n do
6. The random-effects coefficient vector: b

(t)
ik ∼ N (ν

(t)
1 ,V
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1 ) with
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1
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end for
end for

end for

3 Application to simulated data and real data

We first consider simulated surfaces to test the model in terms of surface ap-
proximation. Then, we apply it on a handwritten character recognition problem
by considering real images from the MNIST data set [12] to test it in terms of
surface approximation and clustering.

3.1 Simulated surface approximation

We consider the bi-dimensional arbitrary function μ(x) =
sin(

√

1 + x21 + x22)
√

1 + x21 + x22
and we attempt to approximate it from a sample of simulated noisy surfaces.
We simulate a sample of 100 random surfaces yi(i = 1, . . . , 100) as follows. Each
surface yi is composed of mi = 21 × 21 observations generated on a square
domain (x1, x2) ∈ [−10, 10] × [−10, 10]. To generate the surface yi, we first
add random effects to the mean surface by computing μi(x) + bi and then yi

is simulated by adding a random error term, that is, yi = μi(x) + bi + ei
with bi ∼ N (0, 0.12Imi) and ei ∼ N (0, 0.12Imi). Then, the sample of simulated
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Figure 2: True mean surface (left), an example of noisy surface (middle), A
BSSR fit from 100 surfaces using 15× 15 NBFs (right).

surfacesY = (y1, . . . ,y100) is approximated by applying the BMSSR model with
one component. Figure 2 shows an example of actual arbitrary mean function
before the noise and the random effects are added, an example of simulated
surface the fitted mean surface μ̂(x) = Siβ̂ from a set of 100 surfaces with
d = 15 × 15 NBFs. It can be seen that for the two cases, the approximated
surface resembles the actual one. In particular, the second approximation, using
a reasonable number of basis functions, is very close to the true surface. This is
confirmed by the value of the empirical sum of squared error between the true
surface and the fitted one SSE =

∑m
j=1(μj(x)− μ̂j(x))

2 (m = 441 here), which
equal 0.0865 in this case and which corresponds to a very reasonable fit.

3.2 Handwritten digit clustering using the BMMSSR model

In this section we apply the BMSSR model on a subset of the ZIPcode data
set [13], which is issued from the MNIST data set [12]. The data set contains
9298 16 by 16 pixel gray scale images of Hindu-Arabic handwritten digits. Each
individual yi contains mi = 256 observations yi = (yi1, . . . , yi256)

T values in the
range [−1, 1]. We used a subset of 1000 digits randomly chosen from the Zipcode
testing set with d = 8×8 NBFs The best partition is obtained forK = 12 clusters
and the corresponding mean Adjusted Rand Index (ARI) value equals 0.5238.
Figure 3 shows the cluster means obtained by the proposed Bayesian model
(BMSSR). It clearly shows that the model is able to recover the ten digits as
well as subgroups of the digit 0 and the digit 5.

4 Conclusion and future work

We introduced the Bayesian mixture of spatial spline regressions with mixed-
effects (BMSSR) for spatial functional data. The model is able to accommodate
individuals with both fixed and random effect variability. We derived a Gibbs
sampler to infer the model parameters. Application on simulated surfaces and
real data in a handwritten digit recognition framework shows the potential bene-
fit of the proposed model for practical applications. The BMSSR can be directly
extended to be used for supervised surface classification. A future work will
consist in conducting additional experiments on real data clustering and dis-
crimination as well as model selection.
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Figure 3: Cluster means obtained by the proposed BMSSR model
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