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Abstract. This paper discusses how information visualisation and ma-
chine learning can cross-fertilise. On the one hand, the user-centric field
of information visualisation can help machine learning to better integrate
users in the learning, assessment and interpretation processes. On the
other hand, machine learning can provide powerful algorithms for cluster-
ing, dimensionality reduction, data cleansing, outlier detection, etc. Such
inference tools are required to create efficient visualisations. This paper
highlight opportunities to collaborate for experts in both fields.

1 Introduction

Information visualisation and machine learning originate from different fields.
Whereas information visualisation is closely related to human-computer interac-
tion, graphics and psychology, machine learning relies on concepts from applied
mathematics, statistics, neurology, etc. However, they both aim to amplify
human cognition for the visualisation and analysis of complex, massive data.
Since these two tasks are complementary, both research fields are fated to cross-
fertilise. On the one hand, information visualisation provides tools to put users
back at the center of machine learning. For example, visualisation is necessary in
model quality assessment, model prediction assessment and model examination.
On the other hand, machine learning can be used to cleanse data and to extract
knowledge that information visualisation would otherwise be unable to expose.
This knowledge extraction can be performed with machine learning techniques
such as clustering, dimensionality reduction or outlier detection.

Recently, many conferences, workshops and seminars have offered a place
to discuss common issues and to share solutions. This paper advocates for
such events and introduces the contributions of the special session "Information
Visualisation and Machine Learning: Techniques, Validation and Integration"
of the ESANN’16 conference. First, Sections 2 and 3 discuss the information
visualisation and machine learning perspectives, respectively. Then, Section 4
shows how both research fields can integrate and converge to enrich each other.

2 The Information Visulisation Perpective

Information visualisation is the study of how to represent abstract data in a
visual way to help provide insight and understanding of abstract data. This
capability of visual representations to help humans get insight about data is
also referred to as “visual data mining”, as will be detailed further below. In [1],
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Card, Mackinlay and Shneiderman present this generally well accepted definition
of information visualisation:

“Information visualisation is the use of computer-supported interac-
tive, visual representation of abstract data to amplify cognition.”

This rather packed definition describes four different aspects at the core of in-
formation visualisation. Let us go through these four different aspects.

First, the definition mentions [computer-supported] visual representations.
Relying on the visual human capabilities is at the core of information visu-
alisation. In particular, human beings have been shown to be very efficient at
detecting trends or outliers in a visual representation, in particular through their
preattentive processing capabilities [2]. For example, in a set of red-colored dots,
a group of blue-colored dots will get spotted directly by the human low-level vi-
sual system. This is a task achieved non-consciously by human beings, and
information visualisation relies in part on this powerful human capability.

A second core aspect of information visualisation is that it relies on abstract
data. This contrasts with scientific visualisation, such as a weather forecast or
a visual representation of the human brain. More generally, when we refer to
abstract data in the domain of information visualisation, we refer to data which
has no real-world “visual” counterpart (as would be the case with a visualisation
of the different brain lobes), and for which there is no “natural” representation
(as would be the case with the weather forecast).

A third core aspect of information visualisation lies in interactivity, that is,
the possibility for the user to explore and manipulate the visual representation.
Much of the potential power of a good visualisation relies on careful interac-
tion [3], and it may be an aspect that still offers many promising venues at the
frontier between machine learning and information visualisation. Schneiderman,
in [4], presented the Information Seeking Mantra: “overview first, zoom and fil-
ter, and then details-on-demand ”. A classical illustration of this mantra is the
way a user navigates an online map such as Google Maps. Numerous techniques
have been introduced for enabling interactivity in visualisations, such as zooming
and panning, semantic zooming or brushing and linking [5].

Finally, the last core aspect of information visualisation lies in its capability
to amplify cognition. This is notably what is covered by the terms of visual
data exploration and visual data mining. Three roles can thus be identified
for information visualisation: a role of exploration, where a new hypothesis is
formulated; a role of confirmation, where an existing hypothesis is confirmed
or rejected; and a third role of communication, where a previously confirmed
hypothesis is demonstrated. These three roles lead to the visual analytics’ motto:
“detect the expected and discover the unexpected ”. As Keim puts it [5], “visual
data exploration [or visual data mining, or visual data analysis] is especially
useful when little is known about the data and the exploration goals are vague”.

The task of visual data mining thus typically involves the interactive vi-
sual exploration of massive datasets. Examples of such exploration may include
cluster analysis, outlier detection, dependency assessment or pattern detection
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(repetition, sub-structure, etc.). As one can see, these are typical problems that
have been explored, among others, in the machine learning field. Machine learn-
ing approaches work especially well when confronted with well-defined questions,
typically on very large and/or multidimensional datasets. In contrast, informa-
tion visualisation approaches have shown their efficiency when a specific question
has yet to emerge from a dataset. This is also one instance where machine learn-
ing and information visualisation approaches can complement each other.

This potential dialogue between human-centered visual data mining and ma-
chine learning approaches is one of the many promising venues at the intersection
between these two worlds. Alongside mutual dialogue, both worlds have also the
potential to greatly enrich each other. On the one hand, machine learning re-
searchers have long relied on visual representations to get a visual assessment
of the performances of their algorithms. On the other hand, information visu-
alisation practitioners have had to fight since the beginning with noisy or huge
datasets, frequently relying on ad-hoc filtering or clustering methods to produce
readable, meaningful visualisations. In both cases, researchers from both fields
applied techniques from the other. This article later reviews promising venues
where both fields can actively contribute to each other.

3 The Machine Learning Perpective

Similarly to information visualisation, machine learning can also be seen as a set
of tools to amplify cognition. Indeed, machine learning allows humans to find
patterns in datasets that are too large to be grasped, to get insight in very com-
plex processes, to predict trends in very fast time series, etc. Without machine
learning tools, addressing such tasks would be a mere dream. However, visualisa-
tions are also essential to communicate machine learning results to users, whose
cognition is to be amplified and who are often not machine learning experts. In
this section, three cases are considered where visualisation is necessary: model
quality assessment, model prediction assessment and model examination.

Model quality assessment is an important issue in machine learning, as dis-
cussed in [6]. In supervised classification, this is typically done using accuracy
and similar metrics. Indeed, the goal of the user is clearly specified: maximising
the amount of correct classifications (although, in some cases, class imbalance
or misclassification costs should be taken into account). On the contrary, de-
signing quality metrics in clustering and dimensionality reduction is much more
subjective. One the one hand, there often exists no ground truth, except for
artificial toy problems. On the other hand, clustering and dimensionality reduc-
tion are often considered as ill-defined problems. For example, there exist many
definitions of what a cluster is, leading to a plethora of clustering methods. For
such unsupervised problems, getting informative feedback from users is essential,
what the user-centric field of information visualisation can help for.

Machine learning models are often used to make predictions about new, un-
seen instances. Assessing the quality of these predictions can be achieved using
model quality metrics, but it is not sufficient. For example, in classification,
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although accuracy is an objective measure of classifier quality, it does not tell
anything about the predictions themselves. The user may be interested in vi-
sualising what the predictions look like, where the model makes mistakes, etc.
This exploration task can benefit from information visualisation tools. Predic-
tion assessment is particularly important in dimensionality reduction, since the
goal is often to provide useful visual representations of high-dimensional data.

Model examination is closely connected to prediction visualisation. Indeed,
model visualisations aim to provide insights on how a given model works and
achieves its decisions. A typical example are decision trees that can easily be
interpreted by non-experts. Since model examination is possible only if models
can be interpreted by the user, many works have studied the problem of model
interpretability, like e.g. [7, 8, 9]. Again, the user is crucial to assess model
interpretability and several recent works use surveys [10, 11, 12] and metrics of
user performances [13], what are typical tools in information visualisation.

As a final remark, notice that visualisations are also used in the machine
learning literature to compare algorithms. For example, box plots can be used
to show the difference in mean and deviation between the performance of several
models. Recently, more complex tools have been proposed, like e.g. the Nemenyi
and Bonferroni-Dunn tests [14] that allow comparisons over multiple datasets.

4 Towards Integration and Convergence

As described before, information visualisation and machine learning have almost
from their respective beginnings relied on techniques borrowed from each other’s
field. Practitioners from both fields are more and more organising common
venues to help discuss issues where the expertise developed from each side may
help improve the other[6, 15].

Bertini et Lalanne [16] observed three different distinctive patterns of col-
laboration between the fields of information visualisation and machine learning
(quoted text is from [16]):

1. Computationally enhanced Visualization “contains techniques which are
fundamentally visual but contain some form of automatic computation to
support the visualization”

2. Visually enhanced Mining “contains techniques in which automatic data
mining algorithms are the primary data analysis means and visualization
provides support in understanding and validating the result”

3. Integrated Visualization and Mining “contains techniques in which visu-
alization and mining are integrated in a way that it is not possible to
distinguish a predominant role of any of the two in the process.”

Some interesting issues relevant to the Computationally enhanced Visualiza-
tion category include machine learning-based techniques that would help ensure
the readability of a visualisation. Typically, when creating visualisations of huge
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datasets, most techniques result on cluttered, occluded, or downright unreadable
representations, and information visualisation practitioners generally resort to
processing or filtering the original data by hand. Generally speaking, scalability
of visualisation techniques has been a long-standing issue in the field.

Regarding the Visually enhanced Mining category, Section 3 shows that visu-
alisation tools are necessary for common tasks such as model quality assessment,
model prediction assessment and model examination. For example, interactive
visualization of the results of learning algorithms can help for parameter tuning.
Decision trees are typical examples of models that are visualised to select the
best meta-parameters (e.g. to maximise readability by non-expert end-users).

The Integration between Visualization and Mining opens many promising
directions of research. Let us e.g. consider a high-dimensional dataset that
the user wants to grasp. One could imagine that the user uses an interactive
visualisation tool linked with clustering and dimension reduction algorithms. As
the exploration proceeds, the user could twist the clusters by providing feedback
to the clustering algorithm (e.g. "there are not enough clusters" or "those two
instances should not belong to the same cluster"). In return, the dimension
reduction could also adapt to better expose the clusters. Here, both the machine
learning results and the visualisation change iteratively to adapt to the user.

The papers presented in this special session are representative of the three
categories described above. Rayar et al. [17] present a tool for the visualisation of
large image collections using a clustering algorithm, which is a good representa-
tive of the Computationally enhanced Visualization category. Another example
is the article presented by Turkay et al. [18], which presents a tool to help social
scientists build their models. Visualisations are used at each step to ensure that
social scientists have a complete understanding over how their model is built.

On the other side of the spectrum, the work on interactive dimensionality
reduction presented by Díaz et al. [19] fits well the Visually enhanced Mining
category. The article presented by Barron et Whitehead [20] takes it a step fur-
ther in integrating machine learning and information visualisation by providing
a solution for visualising the features of unsupervised deep networks. A rela-
tively comparable example is the article of De Bie et al. [21] which presents a
framework for more meaningful data projections for high-dimensional data.

Finally, some works fall into the Integration of Visualization and Mining
category. On that regard, the framework presented by Sacha et al. [22] is of
particular interest to both communities. This conceptual framework models hu-
man interactions with machine learning components in a visual analysis process,
with examples, and ends with three open research challenges at the intersection
of machine learning and information visualization research.
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