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Abstract. Modern nonlinear dimensionality reduction (DR) techniques
enable an efficient visual data inspection in the form of scatter plots, but
they suffer from the fact that DR is inherently ill-posed. Discriminative
dimensionality reduction (DiDi) offers one remedy, since it allows a prac-
titioner to identify what is relevant and what should be regarded as noise
by means of auxiliary information such as class labels. Powerful DiDi
methods exist, but they are restricted to vectorial data only. In this con-
tribution, we extend one particularly promising approach to non-vectorial
data characterised by a kernel. This enables us to apply discriminative
dimensionality reduction to complex, possibly discrete or structured data.

1 Introduction

Modern nonlinear dimensionality reduction (DR) techniques enable an intuitive
and highly efficient visual inspection of dominant characteristics of given data
sets, with striking applications e.g. in biomedical data analysis [1, 7, 8, 15, 18, 21].
While their nonlinearity constitutes a crucial prerequisite for their success, their
high flexibility causes the risk to display spurious aspects of the data rather than
relevant information especially for high-dimensional or noisy data. In general,
DR constitutes an ill-posed problem whenever data dimensionality is higher than
the projection space (usually two); correspondingly, the results of DR technolo-
gies severely differ depending on the used method and its parameterisation.

Discriminative dimensionality reduction (DiDi) offers a very intuitive way to
regularise DR technology, such that only those aspects of the data are displayed,
where the applicant is inherently interested in. The applicant specifies auxiliary
information such as class labels; then DiDi methods subtract all information
irrelevant to those aspects from the visual display. The result enables an answer
to crucial questions such as: Do data include any information which relates
to the given classes? Does the data representation include enough information
to robustly separate these classes? Do there exist mis-labelings in the data?
Interestingly, this idea can be used to visualise full classifiers [17].

One particularly powerful general DiDi technology is based on the Rieman-
nian tensor induced by the local Fisher information matrix [4, 14]. Like most
DiDi methods, however, it is restricted to vectorial data, and it is not appli-
cable whenever complex, non-vectorial data structures are dealt with. In this
contribution, we provide an extension of the Fisher metric to a general kernel
space, this way enabling powerful DiDi technologies for general data structures
which are described in terms of pairwise relations, the kernel matrix, only. We
demonstrate the feasibility of the approach for several benchmarks, including
complex structured data from the domains of music and java programming.
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lence (EXC277) is gratefully acknowledged.

123

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



2 Fisher Metric

DR is concerned with a projection of high-dimensional data x ∈ X = R
d to low-

dimensional counterparts π(x) = y ∈ Y = R
2 such that as much information

as possible is preserved. For DiDi, auxiliary information in the form of labels
c = c(x) is available, where c is element of a finite number of class labels. The
goal is to emphasise those aspects of the data x in the display which are relevant
for c. A key observation consists in the fact that popular DR methods rely on
pairwise distances of data only, i.e. auxiliary information can easily be integrated
by changing the metric according to the labels c. This idea yields consistently
superior results as compared to other techniques [20] and is applicable to a wide
range of DR techniques [17]. Hence, we focus our investigations on it.

Locally at a given point x, the information contained in c is taken into ac-
count by a linear scaling of the tangent space according to the Fisher information
matrix

J(x) = Ep(c|x)

{

(

∂

∂x
log p(c|x)

)(

∂

∂x
log p(c|x)

)�}

, (1)

where p(c|x) denotes the probability of the class information c conditioned on
x. This induces a Riemannian tensor and corresponding Riemannian distances

dM (x,x′) = inf
P

∫ 1

0

√

P ′(t)�J(P (t))P ′(t)dt (2)

where the infimum is over all differentiable paths P : [0, 1] → X with start
P (0) = x and end P (1) = x′. The resulting values dM can be directly plugged
into any distance-based DR method. Since the integral (2) is intractable, it
is usually approximated by equidistant points x1 = x, . . . , xT+1 = x′ on the
straight line

dT (x,x
′) =

T
∑

t=1

√

(xt+1 − xt)�J(xt)(xt+1 − xt). (3)

The conditional probability is approximated by a non-parametric Parzen window
estimator

p̂(c|x) =
∑

i δc=ci exp(−0.5‖x− xi‖2/2σ2)
∑

j exp(−0.5‖x− xj‖2/2σ2)
(4)

with bandwidth σ, which yields J(x) = Ep̂(c|x)
{

b(x, c)b(x, c)�
}

/σ4 where
b(x, c) = Eξ(i|x,c){xi} − Eξ(i|x){xi} with empirical expectation E and

ξ(i|x, c) =
δc=ci exp(−0.5‖x− xi‖2/2σ2)

∑

j δc=cj exp(−0.5‖x− xj‖2/2σ2)
(5)

ξ(i|x) =
exp(−0.5‖x− xi‖2/2σ2)

∑

j exp(−0.5‖x− xj‖2/2σ2)
(6)
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3 Kernelisation

We assume that data are characterised in terms of pairwise similarities only, i.e. a
matrix S ∈ R

N×N is given with N being the number of data, entries are denoted
as sij . We assume symmetry of S, such that an implicit vectorial embedding
exists [5]. Further, we require non-negativity of the values to guarantee a valid
probability distribution. In particular, this covers the case of structure kernels
for complex data structures [11]. However, we will see in experiments that the
Fisher metric also provides reasonable results for general matrices. We denote
data in kernel space as xi where sij = x�

i xj . Equidistant points on the line from
xi to xj have the form (1−α)xi+αxj where α = (t−1)/T for t ∈ {1, . . . , T +1},
hence differences of consecutive points have the form (xj−xi)/T . Thus denoting
x(t) := (1−α)xi+αxj , distances dT (xi,xj) · (Tσ2) consist of terms of the form

σ4(xi−xj)
�J(x(t))(xi−xj) =

∑

c

p̂(c|x(t)) (x�
i b(x(t), c) − x�

j b(x(t), c)
)2

(7)

where
x�
i b(x(t), c)) =

∑

l

(

ξ(l|x(t), c) · x�
i xl

︸ ︷︷ ︸

sil

−ξ(l|x(t)) · x�
i xl

︸ ︷︷ ︸

sil

)

(8)

The terms p̂(c|x(t)), ξ(l|x(t), c), and ξ(l|x(t)) can be expressed in terms of Gaus-
sians with argument ‖x(t) − xl‖2 = (1 − α)2sii + α2sjj + sll + 2(1 − α)αsij −
2(1− α)sil − 2αsjl, hence, the full computation can be kernelised.

4 Experiments

Our reformulation of Fisher distance computations in terms of kernels does not
rely on approximations and, hence, is equivalent to the vectorial computation if
the similarity matrix S is given by a standard scalar product. Hence, we do not
present comparisons to the vectorial case, here.

Instead, we evaluate the method for six benchmark data sets that are only
given as similarity matrices and are not necessarily euclidean.

Aural Sonar [16]: Data consist of 100 returns from a broadband active sonar
system, their similarity is evaluated by human experts. Two classes (target
of interest versus clutter) are distinguished.

Patrol [2]: 241 members of seven patrol units are characterised by (partially
faulty) feedback of unit members naming five colleagues each.

Protein [6]: 226 globin proteins are compared based on their evolutionary dis-
tances, four classes of different protein families result.

Voting [2, 10]: 435 either republican or democrat candidates are characterised
by 16 nominal attributes which characterise the key votes identified by the
CQA, the value difference metric is used for comparison.

Java Programs [12, 13]: 64 Java programs which implement bubble sort or
insertion sort, respectively, have been retrieved from the internet. They are
compiled with the Oracle Java Compiler API and compared by alignment.
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Table 1: Average 1-NN classification errors in percent with standard deviations;
sum of the negative EVs in relation to the summed absolute values of the EVs.

AuralS Patrol Protein Voting Java Sonatas
original data (clip) 17 19 10 6 11 11
t-SNE (clip) 15 (±2) 16 (±1) 8 (±1) 7 (±1) 13 (±2) 9 (±1)
Fisher t-SNE (clip) 9 (±1) 11 (±1) 3 (±1) 4 (±1) 11 (±2) 6 (±1)
original data 21 7 77 6 14 13
t-SNE 18 (±2) 87 (±1) 31 (±6) 7 (±1) 15 (±2) 10 (±1)
Fisher t-SNE 10 (±3) 15 (±1) 4 (±0) 6 (±1) 14 (±2) 6 (±1)
baseline (clip) 40 81 48 43 45 49

perc. negative Eigs 21 50 20 0 8 2

Sonatas [3]: 1068 sonatas in MIDI format from the online collection Kunst
der Fuge are transformed to graph structures and compared with the nor-
malised compression distance of their paths, labelling is given by one of 5
composers from the classical / baroque era.

A more detailed description of the data can be found in [2, 3].
Each data set is characterised in terms of a symmetrised similarity matrix

S. All data are projected to two dimensions based on t-Distributed Stochastic
Neighbor Embedding (t-SNE) [19]. We compare the result of a projection of
t-SNE, which is directly applied to the dissimilarity matrix as induced by S,
and the dissimilarity matrix computed from the Fisher metric. We denote the
former step as t-SNE and the latter as Fisher t-SNE, for short. Note that some of
the data matrices S do not relate to valid kernels, i.e. have negative Eigenvalues
(EVs). Therefore, we compare the result achieved with plain data S and its clip-
based eigenvalue correction [2, 5]. Notably, the Fisher metric does not encounter
numerical difficulties when addressing the plain data, while t-SNE does.

Besides the visual impression, we compare the methods by a 1-nearest neigh-
bour (1-NN) classification in the projection space. Thereby we also report the
result which we obtain when applying Fisher t-SNE to data with randomly per-
muted labels, which corresponds to the quality which is merely due to statistical
effects of the data. We refer to the 1-NN error in this setting as a baseline. Note
that it is not reasonable to evaluate the projections by the quality framework [9]
since we do not aim to preserve neighbourhoods based on euclidean distances.

For the computation of distances in the Fisher metric, the parameter σ for
the Parzen window estimate has to be specified. In order to find an appropriate
value, we compute bandwidths using the perplexity based idea as in [18], and
average those to obtain a single bandwidth value.

Since t-SNE is not deterministic, we run the t-SNE algorithm 10 times on
the respective distance matrix. The averaged leave-one-out 1-NN errors for the
six data sets are displayed in Table 1, with standard deviations depicted in
brackets. If clipping is applied, this is stated behind the method name. For the
clipped Eigenspectrum of S, the 1-NN errors of both t-SNE and Fisher t-SNE
are comparably low (see e.g. [2]). Further, the discriminative projections have
an even lower classification error, on average. The comparably high baseline
error indicates that Fisher t-SNE does not neglect the intrinsic structure of the
data when the task is to embed a random class distribution.

Based on the clipped Eigenspectrum, an instance of each embedding is shown
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Fig. 1: Unsupervised t-SNE projections in rows one and three of the data sets
Aural Sonar, Patrol, Protein, Voting, Java Programs and Sonatas. Rows two
and four contain the according supervised Fisher t-SNE projection.

in Fig. 1. For each data set, a t-SNE projection is shown in rows one and three,
a Fisher t-SNE mapping in rows two and four.

In addition to the numerical evaluation, these visualisations show that the
Fisher Information based projections have a clearer class separability and, hence,
enable the user to get a better understanding of the data. The unsupervised
projection of the Protein data set, for instance, suggests that two classes are
strongly overlapping. Here, the discriminative visualisation, which emphasises
local directions that are relevant for class separation, shows that both classes
have only a few overlapping points. Another example constitutes the Patrol data
set, where the Fisher t-SNE embedding shows a clear class structure with only
few noisy points coming from a specific class.

Another interesting aspect in Table 1 is the classification performance on the
original data, without clipping. While t-SNE suffers from a large accuracy loss
for the Patrol and Protein data sets, Fisher t-SNE obtains stable results with
only a slight performance decrease. Particularly the Patrol data set has large

127

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



negative eigenvalues, as can be seen in Table 1.

5 Conclusion

In this contribution we have reformulated one particularly popular approach
for discriminative dimensionality reduction such that it is applicable to non-
vectorial data only given by (dis-)similarities. We evaluated this method with
six data sets from this domain and obtained a clear improvement as compared to
unsupervised projections in many cases. The robustness of Fisher t-SNE towards
indefinite proximities seems interesting and requires further investigation.
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