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1- Federal University of Ceará - Computer Science Department
Rua Campus do Pici sn - Fortaleza-CE - Brazil

2- Institute of Aeronautics and Space - Electronics Division
Praça Marechal Eduardo Gomes, 50, São José dos Campos-SP - Brazil

Abstract. Cotton yarn is often spun from a mixture of distinct cotton
bales. Although many studies have presented efforts to predict hairiness
and strength from cotton properties, the heterogeneity of this mixture and
its influence in such values have been neglected so far. In this work the
properties of the cotton bale mixture are modeled as random variables
and a robust variant of the Extreme Learning Machine (ELM) to address
the cotton quality prediction problem is proposed. A real world dataset
collected from a textile industry was used to compare the performance of
the proposed model with a traditional ELM and a linear regression model.
The results showed that the proposed method outperformed the bench-
mark methods in terms of Average Root Mean Square Error (ARMSE).

1 Introduction

Predicting cotton yarn quality based on the analysis of the cotton fiber has been
the objective of many studies in last years [1]. Being able to predict yarn quality
may reduce production costs by allowing better production planning in textile
industries. In recent years, several works have proposed the use of machine
learning methods for this task [2, 3]. Artificial Neural Networks (ANN) have
been used to predict different cotton yarn quality metrics [4]. Among these
metrics, strength and hairiness are two of the most important ones.

Strength is an important mechanical property of cotton yarns which is related
to the fiber structure [5]. The measurement of strength has become an important
research topic over the years. Many factors may affect strength measurements
such as environmental conditions (temperature and moisture), gauge length,
processing history of cotton samples and timing of the test [6]. Hairiness is
characterized by the quantity of freely moving fiber ends or fiber loops projecting
from a yarn [7]. Usually hairiness is undesirable if it is too high and some
common problems are breakages, lower machine efficiency in speed knitting and
a bad appearance of the produced fabrics [8].

The cotton quality prediction problem can be defined as a standard regres-
sion problem where the inputs are features extracted from cotton fiber bales and
the outputs are the cotton yarn quality metrics. Although good results have
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been obtained so far, previous works do not address many real world problems
faced by many textile companies. One problem relies on the fact that in practice
it is very uncommon to produce cotton yarns from a homogeneous (with similar
properties) cotton mixture. Cotton yarns are produced instead from a mixture
of different cotton bales, each with its own properties. As a consequence, the
mapping between fiber properties and yarn quality can not be done in a straight-
forward way since there is not a single input feature vector, but different feature
vectors obtained from the different bales. It is worth pointing that the variability
of the input bales may influence the final cotton yarn quality.

This work proposes a Robust Extreme Learning Machine (R-ELM) to predict
cotton yarn strength and hairiness under uncertain inputs. The input feature
vectors are modeled as random variables that can be defined using the feature
vectors of the bales that belong to the mixture. The algorithm is said to be
robust since the output is robust to this uncertainty on the training set.

2 Proposed Method

2.1 Overview of Extreme Learning Machines

The ELM model was originally proposed in [9] as an alternative learning method
for single hidden layer feedforward neural networks (SLFNs) using backpropa-
gation. The main difference between a conventional SLFN and an ELM is that
the latter assigns random values to the weights between the input layer and the
hidden layer. Then, the weights between the hidden layer and the output layer
can be computed using the Ordinary Least Squares (OLS) estimate.

Consider a training set containing n arbitrary distinct samples (xi, yi), where
xi ∈ Rd×1 and yi ∈ Rm×1. Let wj ∈ Rd×1 be the weight vector connecting the
j-th hidden node and the input nodes, bj be the bias of the j-th hidden node
and g(·) be the activation function. The output oi of a SLFN with h hidden
neurons for the i-th sample is then given by

oi =
h∑

j=1

βjg(wj · xi + bj) (1)

where βj ∈ Rm×1 is the weight vector connecting the j-th hidden neuron and
the output neurons. Equation 1 can be written in a compact form using Eq. 2:

Hβ = O (2)

where O = [o1, o2, . . . , oN ]T and the elements of matrix H are computed as
defined in Eq. 3.

hij = g(wj · xi + bj) (3)

The output weight vector β = [β1, β2, . . . , βh]T must be estimated in order
to minimize the error function presented in Eq. 4. The OLS solution, given by
Eq. 5, is used to find an estimate for β which minimizes Eq. 4.
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min ||Hβ − Y ||2 (4)

β̂ = (HTH)−1HTY (5)

The ELM approach can be summarized in the following steps:

• Step 1: Randomly assign values for each input weight vector wj and each
threshold bj ;

• Step 2: Compute the hidden layer output matrix H using Eq. 3;

• Step 3: Estimate the output weight β using the Moore-Penrose pseudoin-
verse according to Eq. 5:

2.2 Robust Extreme Learning Machines (R-ELM)

Consider a regression problem where the input data xi are random variables.
In the proposed approach, the goal is to obtain the ELM output given this
uncertain input. For that, it is necessary to estimate the corresponding hidden
layer output vector Hi. It is important to notice that, since xi is a random
variable, Hi can also be modeled as a random variable.

According to Eq. 3, Hi can be calculated by computing the nonlinear func-
tion g(·) over the inputs xi, the hidden layer weights and the biases. It can be
noticed that, since xi is a random variable with unknown distribution, estimat-
ing the random variable Hi can be a non tractable problem. In such situation,
a possible solution can be obtained by using Monte Carlo techniques.

In the current problem, the random inputs xi are the feature vectors of each
mixture of bales. Consider that the i-th mixture is composed of P bales, the

feature vectors for each bale can be represented by x
(p)
i where p = (1, . . . , P ).

In this work, xi is modeled as N (xi,Σ
(i)), where xi and Σ(i) are calculated

according to Eqs. 6 and 7.

xi =
1

P

P∑
p=1

x
(p)
i (6)

Σ(i) =
1

P

P∑
p=1

(x
(p)
i − xi)(x

(p)
i − xi)

T (7)

The Monte Carlo procedure consists in sampling K points from the distri-

bution of xi. After that the hidden layer outputs, H
(k)
i for k = (1, . . . ,K) are

calculated according to Eq. 3. After obtaining the K samples for a given Hi, any
distribution estimation procedure (parametric or non-parametric) can be used.

Considering H as a random matrix with the n vectors Hi, it is possible to
represent matrix H according to:
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H = H + U (8)

where H is the mean matrix of H and U is a random matrix with zero mean.
The objective function presented in Eq. 4 can be redefined so that H is a

random matrix. In this case, the goal becomes to minimize the expected value
of the objective function as defined in Eq. 9.

min E
[
||Hβ − Y ||2

]
(9)

The objective function can be expressed as:

E[||Hβ − Y ||2] = E[((H + U)β − Y )T ((H + U)β − Y )]

= E[((Hβ − Y )T + (Uβ)T )((Hβ − Y ) + Uβ)]

= (Hβ − Y )T (Hβ − Y ) + E(βTUTUβ)

= ||Hβ − Y ||2 + βT ΣHβ

where ΣH = E[UTU ] is the covariance matrix of H.
As observed, this problem, termed as robust approximation problem, can be

seen as a regularized least square problem and its solution is given by:

β̂ = (H
T
H + ΣH)−1H

T
Y (10)

It is possible to obtain the matrix H and the covariance matrix C(i) for the
i-th transformed example by the hidden layer using Eqs. 11 and 12.

Hi =
1

K

K∑
k=1

H
(k)
i (11)

C(i) =
1

K

K∑
k=1

(H
(k)
i −Hi)(H

(k)
i −Hi)

T (12)

The covariance matrix ΣH can be obtained by summing C(i) over all i ex-
amples, as shown in Eq. 13:

ΣH =
n∑

i=1

C(i) (13)

This result can be obtained by noticing that for each element j, j′ of ΣH it
follows that:

ΣH
j,j′ =

n∑
i=1

E[Ui,jUi,j′ ] =
n∑

i=1

Cov(Ui,jUi,j′) + E[Ui,j ]E[Ui,j′ ]

=
n∑

i=1

Cov(Ui,jUi,j′)
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The final procedure to implement the R-ELM model can be summarized in
the following steps:

• Step 1: Calculate the mean vectors (xi) and the covariance matrices (Σ(i))
using the feature vectors that belong to the i-th mixture according to Eqs.
6 and 7.

• Step 2: Generate K samples from each random variable xi with distribu-
tion defined as N (xi,Σ

(i)).

• Step 3: For the i-th example, obtain H
(k)
i for all K samples, according

to Eq. 3.

• Step 4: Calculate H and ΣH using Eqs. 11, 12 and 13.

• Step 5: Find the weights β of the output layer according to Eq. 10.

3 Experiments

The proposed method was tested on a dataset of cotton yarn quality measures
collected in 2009 on a facility of a textile industry in Brazil. A total of 640
mixtures of 10 bales were collected along with the corresponding strength and
hairiness of the produced yarn. The feature vector for each bale comprises
the following measurements: Trash Code, Trash Area, Trash Particle Count,
Length, Uniformity, Short Fiber Index, Strength, Elongation, Micronaire, Ma-
turity, White Level and Yellow Level.

The performance of the proposed algorithm was compared against a tradi-
tional ELM and a linear regression model. The experiments consisted of 20
similar trials with 90% of the dataset in the training set and 10% in the testing
set. The number of hidden nodes for R-ELM and ELM was selected using 10-fold
cross-validation. In order to assess the influence of the number of samples used
to approximate each Hi, the R-ELM algorithm is evaluated for different values
of K. The performance measure adopted was the Average Root Mean Square
Error (ARMSE). The results obtained in the experiments are shown in Table 1.

Table 1: ARMSE comparison for cotton yarn hairiness and strength prediction

Model Hairiness Strength

Linear Regression 1.279 ± 0.157 2.732 ± 0.805
ELM 1.075 ± 0.217 2.484 ± 0.764
R-ELM (K = 5) 1.045 ± 0.227 2.355 ± 0.820
R-ELM (K = 10) 1.021 ± 0.222 2.333 ± 0.774
R-ELM (K = 15) 1.015 ± 0.223 2.307 ± 0.714
R-ELM (K = 20) 1.002 ± 0.223 2.297 ± 0.731
R-ELM (K = 25) 0.998 ± 0.225 2.228 ± 0.739

69

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



As expected, the proposed R-ELM model presented more reliable results than
the other methods. The linear model, which is commonly adopted for this task,
presented the worst performance. It is worth noticing that the performance of
the R-ELM model increases with the number of samples K. This is explained
by the fact that when K increases it is possible to obtain better estimates for H
and ΣH .

4 Conclusions

A variant of ELM that can be trained when the elements of the training set
are random variables was proposed. The model was designed to be robust to
the uncertainties of the training set. The resulting model, named R-ELM, is a
regularized ELM without a regularization hyper-parameter.

The proposed model was used to predict cotton yarn quality measures col-
lected from a real world textile industry and was compared to a linear regression
model and a standard ELM. The results showed that the proposed model out-
performed both benchmark methods in terms of ARMSE.

It was also possible to notice that the performance of proposed method is
affected by the number of samples K that are used to calculate the matrix H. A
possible topic for future research is to develop a method to define the optimum
number of samples to be used.
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