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Abstract.

Current research in Machine Learning (ML) combines the study of varia-
tions on well-established methods with cutting-edge breakthroughs based
on completely new approaches. Among the latter, emerging paradigms
from Physics have taken special relevance in recent years. Although still
in its initial stages, Quantum Machine Learning (QML) shows promising
ways to speed up some of the costly ML calculations with a similar or
even better performance than existing approaches. Two additional ad-
vantages are related to the intrinsic probabilistic approach of QML, since
quantum states are genuinely probabilistic, and to the capability of finding
the global optimum of a given cost function by means of adiabatic quan-
tum optimization, thus circumventing the usual problem of local minima.
Another Physics approach for ML comes from Statistical Physics and is
linked to Information theory in supervised and semi-supervised learning
frameworks. On the other hand, and from the perspective of Physics, ML
can provide solutions by extracting knowledge from huge amounts of data,
as it is common in many experiments in the field, such as those related to
High Energy Physics for elementary-particle research and Observational
Astronomy.

1 Introduction

ML has become indispensable for pattern discovery from large data sets. It is also
the theory at the core of a larger set of data science tools known as data mining.
It is a mature field with an astonishing array of practical applications in tasks
related to modeling, prediction, classification, visualization and planning [1].
ML includes many robust methods that can transform raw data into structured
information by means of learning algorithms [2].

It is hence not surprising that those learning algorithms are starting to find
their way into applications of quantum information processing in three different
ways. First, using quantum resources to perform learning is an attractive line of
inquiry, with advantages ranging from quadratic or even exponential speedup,
increased learning capacity, reduced sample complexity and better generalization
performance; examples include quantum perceptrons, quantum neural networks,
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quantum deep learning, boosting training by Grover’s search, adiabatic quan-
tum annealing, and quantum support vector machines [3]. Second, from the
perspective of quantum theory foundations, causal networks and their quantum
generalizations, and the connection to non-locality are of paramount importance,
whereas solid-state implementations of adiabatic quantum evolution are already
bringing tangible benefits to ML practitioners [4]. Finally, classical ML applied
in experimental Physics is also proving to be a fruitful avenue that deserves
further exploration; this is an applied approach with relevance to experimental
physicists. The first promising results were related to the application of ML to
quantum information processing; in particular, using Reinforcement Learning
(RL) to control the classical part of a quantum physics problem, e.g., using an
agent-based approach to control measurement-based quantum computing [5].

Although computational learning theory and quantum information process-
ing have already produced good results, interdisciplinary collaboration is still
scarce in the ground. This special session tries to bring together researchers
from both fields, with an interest in creating a collaborative research network;
the session is also serving as a platform for the publication of ongoing research
in this amazing and promising field.

Some specific technical goals that are still under study and can be accom-
plished by means of a collaboration between quantum information and learning
theory are the following:

1. To generalize sample and model complexity measures to the quantum case;
consider mixed classical-quantum complexity measures; understand the
limits and trade-offs attainable by quantum resources and derive a quan-
tum “no free lunch” theorem.

2. To establish theoretical guarantees of optimization by quantum resources
when applied to learning problems; analyze generalization performance;
and develop operational QML algorithms.

3. To devise algorithms and protocols for blind quantum computation in re-
lation to QML.

4. To characterize the role and applicability of causal Bayesian networks in
ML.

5. To characterize practical ML and RL tools in the optimization and control
of quantum information processing not in the asymptotic limit.

6. To devise genuinely quantum learning protocols with no classical coun-
terpart, benchmarking their performance in relevant quantum information
processing tasks.

7. To explore quantum-like elements in symbolic systems for learning theory
development.
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8. The development of models for quantum learning agents, including agents
incorporating quantum (projective) simulation methodology, and their im-
plementations.

2 Quantum Machine Learning

Recent theoretical developments hint at the benefits of applying quantum meth-
ods to learning algorithms [3, 4, 6, 7, 8, 9, 10]. To begin with, computational
complexity can be reduced exponentially in some cases, whereas quadratic re-
duction can be observed in others [11]. Examples include quantum support vec-
tor machines, quantum nearest neighbor clustering, quantum associative mem-
ories, quantum RL [12] and several attempts to develop quantum neural net-
works [7, 13, 14, 15]. On a more practical side, quantum annealing (adiabatic
quantum computing) is beginning to benefit from scalable implementations, and
this hardware appears to be extremely efficient in certain global optimization
and learning problems [4].

Although improved computational complexity and reduced training time are
obviously of paramount relevance, it is also important to take into account that
through nonconvex objective functions, QML algorithms become more robust
to noise and outliers, which might make their generalization performance better
than that achieved by many known classical algorithms. However, generalization
performance is seldom studied in quantum algorithms, being this one of the
potential areas in which it is possible to make substantial progresses.

Another topic that deserves attention is the study of how the different types
of learning (inductive, transductive, active, supervised, unsupervised, or semi-
supervised) map to quantum processes in general. One particular feature of
quantum theory is that the data encoded on a quantum state might be difficult
to access by the party performing computation on them. Addressing that issue
will help generalizing known important classical results to the quantum case:
sample and model complexity, the trade-off between complexity measures, “no
free lunch” theorems, and the limits attainable by using quantum resources.

From a broad perspective, the question of what learning even means in gen-
eral quantum environments (e.g. when the learning agent and the environment
become entangled) is not trivial and needs to be investigated. Specifically, learn-
ing in quantum environments does not correspond to standard quantum oracle
models, which, in contrast, have been extensively explored. Hence, the devel-
opment of new frameworks and techniques is required, in order to establish the
bounds of possible quantum improvements in learning.

Many practical questions still remain to be answered: are current proposals
for QML operational? Can they be translated to a physical implementation?
For example, Grover’s search, a quantum algorithm for finding an element in an
unordered set is quadratically faster than any classical version thereof, and is
underlying many QML methods, but it is hard to implement in actual quantum
systems, thus decreasing quadratic speedup due to imperfections. Quantum an-
nealing suffers from similar problems: while it is possible to violate the time
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limits imposed by the gap in the adiabatic evolution and perform the process at
a temperature higher than necessary, the result is likely to be a low-level excited
state of the target model rather than the ground state. While this local optimum
is still extremely useful for ML, the limits imposed by that methodology must
be understood. By gaining insights on the trade-offs between the internal work-
ing of quantum strategies and their physical implementations, further efficient
quantum-inspired classical learning algorithms might be derived. Related to this
issue, the difference between thermal fluctuation and quantum fluctuation also
needs special attention because in many cases quantum annealing outperforms
simulated annealing; therefore, it is important to know the best methods for
quantum fluctuations as well as to study the possibility of improving quantum
annealing by means of a sort of feedback control.

3 Bayesian networks

As stated in the abstract, an intrinsic property of QML is its embodiment of
probability theory. This makes this field a natural relative of Statistical Machine
learning [16].

In this context, the quantum generalization of Bayesian networks and causal
graphs are of special theoretical importance, as they relate to the foundations of
quantum mechanics and nonlocality. The mathematical theory of causality, and
especially the graphical models that describe causal probabilistic relationships
have shown to be a very useful tool in a wide range of applications, such as
statistics and ML [17]; recently, its relationship with quantum information has
also been studied [18, 19].

In spite of its great recent success, Bayesian networks still offer many pos-
sibilities for further developments. Since classical networks can be associated
with many different types of information processing, it is important to deter-
mine whether the addition of quantum effects in those problems might be at
some point determined by a Bell inequality. A straightforward possibility is the
generalization of classical causal networks to the quantum case; that would imply
not only having a long-term impact in the foundations of Physics but also provid-
ing a new set of tools to understand the limitations of quantum mechanics as a
resource in the processing of information. However, the latter would need a def-
inition of causal networks that can entail quantum phenomena, thus developing
new techniques to perform actual learning of quantum causal networks, e.g., ex-
tending variational algorithms beyond the existing state-of-the art, developing
algorithms for statistical inference of quantum systems in arbitrary quantum
causal networks and exploiting recent state-of-the art non-commutative opti-
mization and factorization techniques.

4 Machine Learning and Quantum Information

While QML deals with quantum physical processes that aid learning, the use of
classical ML algorithms to solve problems in quantum information theory is likely
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to become another cornerstone of the relationship between Physics and ML. For
the time being, this line of research is yet to achieve wider acceptance, mostly due
to the fact that present-day learning techniques are not adapted to the nature of
quantum problems. However, there are a few promising results involving RL in
adaptive quantum metrology [20]; heuristic-based RL techniques to design the
quantum process tend to outperform standard greedy control techniques. There
have also been some theoretical attemps of using RL in measurement-based
quantum computing [5], and online nonconvex optimization in circuit simula-
tion [21] and ultra-cold-atom experiments [22]; next steps of those algorithms
might deal with decoherence or noise, always present in practical applications.
Apart from applying classical ML in quantum information processing, a possible
research avenue would entail taking ideas from learning theory to improve or
develop new quantum strategies or protocols.

Although there are a number of proofs on how good certain quantum proto-
cols and strategies can get in the asymptotic limit, even in the presence of noise
and decoherence, RL and heuristic global optimization algorithms are important
in the non-asymptotic limit, bringing these procedures closer to experimental re-
ality. The key issue to explore is how close one can get to the theoretical bounds
by using classical learning algorithms. Another exciting line of research is related
to the increase of the size of the physical systems and the number of particles
that can be achieved by adaptive quantum-enhanced metrology in a RL scenario.

The addition of computational learning theory to quantum scenarios has
already been proven useful, but the definition of new learning schemes where
all the elements involved are of a quantum nature might not only improve the
quantum information processing toolbox, but also hint at a fundamental theory
of knowledge acquisition in physical systems.

5 Machine Learning in experimental Physics

A maybe less exotic, but very useful connection between Physics and ML comes
from the application of classsical ML to those problems in current Physics re-
search in which huge amounts of data are acquired, so that there is a need to
go beyond human inspection to automatically transform those raw data into
structured information and usable knowledge [23, 24].

Obviously, this is a long-term research line with a promising outlook, since
big data appear in many problems in Physics, such as High Energy Physics for
elementary-particle research, Observational Astronomy or Remote Sensing of
Hyperspectral Imagery, to name a few. Therefore, there exists a need for data-
based knowledge extraction procedures capable of transferring knowledge to the
Physics domain. In addition to the usual approach of using classical ML to those
problems, a possible and exciting future avenue of research might come from the
application of the approaches presented in Sections 2, 3 and 4 to data acquired
in Physics problems, thus using ML approaches that are closer to Physics and
which might provide a more realistic description of the problems.
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6 Contributions to the 24th ESANN special session

Five contributions were accepted to be part of the special session“Physics and
Machine Learning: Emerging Paradigms” at ESANN 2016. The high quality of
all those contributions must be emphasized, given the low acceptance ratio of
the conference.The accepted papers are related to different topics, most of them
described in previous sections, and are summarily described next.

6.1 Quantum Machine Learning

The performance of Quantum Clustering (QC) when applied to non-spherically
distributed data sets is studied in [25]; the work shows that QC outperforms
K-Means when applied to a non-spherically distributed data set. The Jaccard
score (JS) is used as performance measure; since JS can be set depending on QC
parameters, local maxima can be found by tuning QC parameters, thus unveiling
the underlying data structure. The paper also suggests that a straightforward
improvement of the approach may well be related to the discovery of a method
to obtain an appropriate number of clusters automatically. The QC algorithm
introduced in [26] was applied in this study; it uses the Schrödinger probabil-
ity wave function formed as a superposition of Gaussian probability functions;
looking for solutions of the harmonic oscillator potential in ground energy state,
those centroids in which the potential has local minima can be found, becoming
the cluster prototypes.

A broad framework for describing learning agents in general quantum en-
vironments is provided in [27]. Different classical environments that allow for
quantum enhancements in learning are analyzed, by contrasting environments
to quantum oracles. The possibility of quantum improvements depends on the
internal structure of the quantum environment; if the environments have an ap-
propriate structure, there is an almost generic improvement in learning times in
a wide range of scenarios.

6.2 Machine Learning and Quantum Information

In [20], authors show the relevance of well-designed classical ML algorithms
in quantum physics problems. In particular, RL is proposed to discover the
optimal sequence of actions that guarantees quantum-enhanced interferometric
phase estimation up to 100 photons in a noisy environment. The study pays
special attention to the scalability of calculations, using clustered computation
and by vectorizing time-critical operations. The proposed algorithm shows to
be robust to noise.

The way of training a quantum network of pairwise interacting qubits such
that its evolution implements a target quantum algorithm into a given network
subset is shown in [28]. The strategy followed in this work is inspired by super-
vised learning and is designed to help the physical construction of a quantum
computer operating with minimal external classical control.
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6.3 Machine Learning in experimental Physics

Authors in [29] present a ML challenge on High-Energy Physics, that was run in
2014 (www.kaggle.com/c/higgs-boson) with the participation of 1785 teams.
While physicists had the opportunity to improve on the state-of-the-art using
“feature engineering” based on Physics principles, this was not the determining
factor in winning the challenge. Rather, the challenge revealed that the central
difficulty of the problem was to develop a strategy to optimize the Approximate
Median Significance objective function directly, which is a particularly challeng-
ing and novel problem. This objective function aims at increasing the power of
a statistical test. The top ranking learning machines included techniques such
as deep learning and gradient-tree boosting, two of the hottest topics in ML
nowadays.
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