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Abstract. Kernel methods consistently outperformed previous gen-
erations of learning techniques. They provide a flexible and expressive
learning framework that has been successfully applied to a wide range of
real world problems but, recently, novel algorithms, such as Deep Neural
Networks and Ensemble Methods, have increased their competitiveness
against them. Due to the current data growth in size, heterogeneity and
structure, the new generation of algorithms are expected to solve increas-
ingly challenging problems. This must be done under growing constraints
such as computational resources, memory budget and energy consump-
tion. For these reasons, new ideas have to come up in the field of kernel
learning, such as deeper kernels and novel algorithms, to fill the gap that
now exists with the most recent learning paradigms. The purpose of this
special session is to highlight recent advances in learning with kernels. In
particular, this session welcomes contributions toward the solution of the
weaknesses (e.g. scalability, computational efficiency and too shallow ker-
nels) and the improvement of the strengths (e.g. the ability of dealing with
structural data) of the state of the art kernel methods. We also encour-
age the submission of new theoretical results in the Statistical Learning
Theory framework and innovative solutions to real world problems.

1 Introduction

Kernel methods are a family of machine learning algorithms and they represent
the solution in terms of pairwise similarity between input examples and do not
work on an explicit representation of the examples [1]. This function for com-
puting similarity has to be a kernel function. Given a set X and a function
K : X × X → R, we say that K is a kernel on X × X if K is symmetric and
positive-semidefinite. It is easy to see that if each x ∈ X can be represented
as φ(x) = {φn(x)}n≥1 such that the value returned by K is the ordinary dot
product K(x, y) = 〈φ(x), φ(y)〉 =

∑
n φn(x)φn(y) then K is a kernel. If X is a

countable set, the converse is also always true. The vector space induced by φ is
called the feature space. It is easy to show that kernels are closed under positive
weighted summation. This simple property is exploited in the Multiple Kernel
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Learning algorithms [2, 3] where a new kernel is created by using a weighted
sum of base kernels with positive coefficients. This is only an example and ker-
nels have other important properties that justify their success in the machine
learning community [4].

Kernel learning algorithms search for (linear) relations in the feature space,
where it is more likely for examples to be linearly separable [5]. In these methods,
the learning algorithm is formulated as an optimization problem that, if the
adopted function is a kernel, is convex and has a global minimum.

Kernel methods have been broadly studied in the last few years, from a the-
oretical point of view [6, 7, 8, 9, 10], and also for the wide range of applications
they have been applied to because of their computational efficiency and the high
predictive performance they are able to reach. Recently, novel algorithms, such
as Deep Neural Networks and Ensemble Methods, have increased their compet-
itiveness against them. Due to the current data growth in size, heterogeneity
and structure, the new generation of algorithms are expected to solve increas-
ingly challenging problems. This must be done under growing constraints such
as computational resources, memory budget and energy consumption. For these
reasons, new ideas have to come up in the field of kernel learning, such as deeper
kernels and novel algorithms, to fill the gap that now exists with the most recent
learning paradigms.

The papers accepted in the special session can be broadly divided in three
categories: in Section 2, two applications of kernel methods to relevant real-
world problems are presented. Section 3 presents an analysis of kernels for
graph-structured data, and a novel kernel for trees. Finally, in Section 4, three
novel algorithms are presented dealing with constraints and the efficiency of
kernel methods.

2 Applications

The special session contribution [11] (C1) proposes an efficient kernel-based col-
laborative filtering technique for large scale top-N recommendation. Collabora-
tive filtering (CF) is one of the most popular methods used in recommendation
systems. In its typical setting a CF method, in order to make recommendation,
only requires the so-called rating matrix (Rn×m) in which are defined the prefer-
ences of n users for m items. In particular, C1 focuses on implicit feedback where
users preferences are expressed in a binary form (i.e, 1 for user-item interaction,
0 otherwise). The increasing interest on implicit feedbacks is justified by the
fact that users are usually reluctant to give explicit opinions for items, while the
number of interactions (i.e., implicit feedbacks) are continuously growing. Since
these implicit feedbacks do not represent ratings, the recommendation task to
solve is a top-N ranking of items for each user.

Recently, Kaggle organized a challenge, the Million Songs Dataset challenge
(MSD) [12], on top-N recommendation with implicit feedback that was defined
on a very large dataset with over 1M users and 380K items for a total of roughly
50M interactions. The winning method [13] is an extension of the item-based
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nearest-neighbors algorithm [14] which exploits the asymmetric cosine similarity.
The main problem of this solution is that it is not theoretically well founded.
In [15] a more theoretically grounded algorithm (CF-OMD) for top-N recom-
mendation is proposed. The method, inspired by preference learning, explicitly
optimizes the AUC and results show very good performance on the MovieLens
dataset. The drawback of this approach is its complexity, since it requires the
optimization of n quadratic problems defined on m variables.

C1 proposes a variant of CF-OMD based on linear kernel that makes it
applicable to very large datasets. The method exploits the typical data sparsity
of CF datasets by reducing the complexity of each single optimization problem
by order of magnitudes. This formulation is then generalized to other kernels
preserving the efficiency. The efficiency of the method is guaranteed only if the
kernel is sparse. C1 shows how to create a sparse polynomial kernel starting from
sparse data. Results shows that the proposed methods achieve good performance
on the MSD with an execution time about 5 time faster than the state-of-the-art
method.

The special session contribution [16] (C2) proposes an application of kernel
methods to a problem from the Bioinformatics domain, i.e. the problem of RNA
inverse folding. RNA polymers are an important class of molecules: not only
they are involved in a variety of biological functions, from coding to decoding,
from regulation to expression of genes, but crucially, they are nowadays easily
synthesizable, opening interesting application scenarios in biotechnological and
biomedical domains. C2 proposes a constructive machine learning framework
to aid in the rational design of such polymers. The paper proposes a pipeline
where a central role is played by a graph kernel [17] (see Section 3) in a su-
pervised setting, that is used as a linear discriminant estimator. The adopted
graph kernel allows for an explicit (sparse) feature space representation. This
allows to explicitly access the discriminative importance of each feature which
will be later used to define the notion of part importance over molecular parts.
Then the set of most important parts is converted into specific sequence and
structure constraints. Finally an inverse folding algorithm, based on ant colony
optimization [18], uses these constraints to compute the desired RNA sequence.

3 Kernel Functions for non-vectorial data

Traditional machine learning models, e.g. neural networks, are suitable for deal-
ing with data represented in a vectorial form. Therefore, when applied on real-
world data, they need to resort to a fixed size vectorial representation of the
data, that may involve a number of drawbacks such as information loss or the
need of domain experts to design such representation at hand. More complex
structures, for example graphs, may be a more suitable tool to describe relations
in many real-world domains such as chemistry, molecular biology or speech and
text processing. Kernel methods are particularly suited for these tasks, since all
they need is a kernel function to be defined between two examples, in whatever
form they are represented. For this reason, machine learning for structured data
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is an active area of research [19, 20, 21] Indeed, several kernel functions have
been defined for sequences [22, 23], trees [21] or graphs [24, 25, 26].

In the following we present two papers dealing with kernels for non-vectorial
data. The first work analyzes kernels for graphs (C3), while the second one
defines a kernel for trees defined on the state space of an Echo State Network
(C4).

The special session contribution [27] (C3) deals with the problem of proposing
a theoretically grounded and efficiently computable notion of expressiveness of a
kernel in order to analyze the expressiveness of different graph kernels. Among
the different machine learning techniques applicable to graphs, kernel methods
are a well established solution. In fact graph kernels relieves the user from the
definition of a vectorial representation of the data, a time consuming and task-
specific operation. Several instances of graph kernels have been presented in
literature. A recent advance in the field are fast kernels (near-linear time) that
allow for an explicit, sparse feature space representation that can be successfully
applied to big graph datasets [28, 29]. Each kernel considers as features dif-
ferent small substructures of the original graph. Empirical comparisons among
different kernels can be found [17, 25] but, with few exceptions [24], no theo-
retical comparison is present. Moreover, usually kernels depend on one or more
user-specified parameters, that control the resulting computational complexity,
and change the induced hypothesis space. The selection of an appropriate kernel
(and kernel parameters) can be a critical phase for achieving satisfying predictive
performance on a specific task. In particular, different kernels induce different
hypothesis spaces. In the context of graph kernels, the expressiveness of a kernel
is defined as its ability to distinguish between non-isomorphic examples. In [30]
it is shown that complete graph kernels (kernels that map each non-isomorphic
graph in a different point in the feature space) are hard to compute. Thus, the
kernels that we consider (and the ones that are used in practice) are not com-
plete, but it is difficult to characterize their expressiveness, even in a relative
way. If the non-zero features generated by different kernels are independent to
each other, then it is easy to see that the more non-zero features a kernel gen-
erates, the more it is able to discriminate between examples, and so the more
it is expressive. However, this is not the case with structural features, where
there are strong dependency relationships among them, i.e. a feature can be
non-zero only if some specific features are too [31]. In this case, there is no
easy way to assess how expressive a kernel is. Consequently the contribution
of C3 results to be quite important in this field of research. In particular, the
result is interesting since it builds upon the Rademacher Complexity (RC), a
powerful notion of complexity of an hypothesis space, which is used in the finite
sample analysis of the generalization error of and hypothesis chosen in a space
of possible ones during the learning process [6, 7, 8, 9, 10]. The results reported
in C3 on real world dataset and state-of-the-art graph kernels confirm some
empirically known expressivity properties and support them with an adequate
theoretical background. C3 proposes also a future application of the proposed
approach. In fact the proposed measure can, in future, be applied to perform
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kernel/parameters selection. Moreover, C3 paves the way to the exploitation of
more complex measures of complexity such as the Local Rademacher complexity.

The special session contribution [32] (C4) defines a kernel for trees as an ac-
tivation kernel over the reservoir state space of a Tree Echo State Network [33]
(TreeESN). As for standard Echo State Networks, the architecture of a TreeESN
is composed of an untrained recurrent non-linear reservoir and a linear readout
that can be trained by efficient linear methods. C4 exploits the recursive en-
coding of the (tree-)structure in the state activations of the untrained recurrent
layer to define a kernel over trees. The intuition is that the dense recursive
encoding defined by the untrained reservoir of a TreeESN can provide a rich
representation of the structural knowledge that allows defining an efficient ker-
nel over very small reservoirs. The paper discusses how the contractive property
of the reservoir induces a topographic organization of the state space that can
be used to compute structural matches in terms of pairwise distances between
points in the state space. More in detail, to produce a mapping for a tree, C4
uses a TreeESN to project each substructure (subtree) tu of an input tree t to
a N-dimensional point xu corresponding to the reservoir activation for the tree
node acting as root of the substructure. Thus, a tree t comprising T nodes is
transformed into T vectors, one for each node u of the tree. Evaluating the
similarity between two structures, in this context, becomes a matter of comput-
ing distances between points in the reservoir state space. This distance can be
defined as a (thresholded) Euclidean distance. The experimental analysis shows
that the proposed kernel is capable of achieving competitive classification results
by relying on very small reservoirs comprising as little as 10 sparsely connected
recurrent neurons.

4 Learning Algorithms

The special session contribution [34] (C5) deals with one of the main problems
that arise when one has to learn from data. In particular any learning proce-
dure is subjected to many constraints [6, 35] which can be grouped in two main
families: hard and soft constraints [36]. Hard constraints cannot be violated
under any circumstance while soft constraints can be violated at the cost of
some penalization. Hard constraints are often more expressive respect to the
soft ones when it comes to formalize the learning procedure and to solve the as-
sociated optimization problem [37]. Unfortunately, from a computational point
of view, dealing with hard constraints results in more difficult problems (e.g.
NP-Complete or NP-Hard problems) respect to deal with the soft ones [38, 39].
For this reason, often, hard-constrained learning problems are solved through
one or more soft-constrained problems. The motivation behind this approach is
that, under suitable hypothesis, the optimal solutions of those soft-constrained
learning problems tend to those of the original hard-constrained ones [40]. Con-
sequently the challenge is to find families of hard-constrained problems which can
be addressed by using this quite promising approach. In particular, by building
on [40] and by extending [36], C5 focuses on a particular set of constraints, the
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pointwise constraints (PWCs). PWCs are associated to a finite set of sample,
in which each element of the set defines one such constraint. PWCs are very
often used in ML problems, since they are able to model very general learning
conditions. The main contribution of the C5 is that it shows that the optimal
solution to the learning problem with hard bilateral and linear PWCs can be
obtained as the limit of the sequence of optimal solutions to the related learn-
ing problems with soft bilateral and linear PWCs, when the penalty parameter
tends to infinity. In particular, in the paper, the optimal solutions to the two
problems, obtained in the particular cases in which there are only hard linear
constraints or only soft linear constraints, is compared. Moreover, the limit be-
havior of the optimal solution to the soft constrained learning problem, when
the penalty parameter tends to infinity, is studied. The paper also discusses on
the future direction of this promising field or research where the challenge is
to extend the proposed approach to learning problems characterized by mixed
hard/soft constraints, when all the hard constraints should be replaced by soft
constraints.

The special session contribution [41] (C6) is a simple and effective kernel
approximation approach. In real applications, the computational cost of ker-
nel methods could be prohibitive. Specifically, the cost of computation and
storage of kernel matrix for n examples with d features is O(n2d) and O(n2),
respectively. Moreover, all the learning algorithms require several matrix-vector
multiplications with a computational cost of O(n3) each.
For these reasons, finding the best kernel approximation is an interesting and
challenging task. The most popular method is the Nystrom approximations [42].
This method attempts to observe some columns and corresponding rows of the
matrix in order to recover the kernel matrix. Different extensions of Nystrom
method have been analyzed in the past [43], using non-uniform sampling to select
the columns. For example, K-means clustering of input data can be exploited to
sample the columns as in [44]. These methods show improvement over the stan-
dard Nystrom [43]. Recently, in [45], a memory efficient kernel approximation
has been proposed. This approach works by finding blocks in the kernel matrix
followed by approximation of each block. The blocks are composed by clustering
the data in the input space. MEKA uses the same space as the rank r approxi-
mation of the Nystrom method and is able to perform a rank cr approximation,
where c is the number of clusters.
C6 exploits the alternating least squares (ALS) [46, 47] and proposes an al-
gorithm for rank r approximation of the kernel matrix by computing only a
subset Ω of all the entries of the kernel (KALS). KALS solves a non-convex
optimization problem followed by a matrix completion step using ALS. KALS
has a complexity of O(|Ω|r2) and shows better performance than baseline and
state-of-the-art kernel approximation methods on different benchmark datasets.
In C6, a complete theoretical analysis extends the current guarantees of ALS for
kernel approximation. The convergence of KALS to the optimal SVD solution
is proved under a coherence assumption. As future work, it will be possible to
evaluate different efficient sampling schemes in order to remove the coherence
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assumption generalizing the KALS algorithm.
The last contribution to the special session [48] (C7) focuses on developing

a new learning approach, based on Gaussian processes (GP), for dealing with
times series prediction in the case of structured data. The paper builds upon a
series of results, coming from different fields in ML, in order to solve a quite chal-
lenging task. In fact time series prediction is a classic topic in ML with has been
successfully applied to a wide range of applications [49]. This task is becom-
ing increasingly challenging due to the rise of new complex data structure like
sequences, trees or graphs in many real world applications such social network
analysis or intelligent tutoring systems [50, 51]. Classical learning paradigms
are not able to handle or take advantage of the structure of the data since they
handle just vectorial data [49]. Nevertheless, GPs have shown to be state-of-
the-art tools for dealing with time series prediction [52, 53]. Moreover, GP are
based on kernel values for the given data as input and, as shown in the C7, a
special choice of the prior allows to express the predictions provided by GPs as
an affine combination of given data. Based on this consideration the C7 shows
that it is possible to build upon the vast literature of distance measures and
kernels for structured data, such as alignment distances, tree and graph kernels,
to access structured data instead of vectors as time series entries [54, 55]. More-
over, as shown in C7, it is possible rely on established embeddings of the space
of structured objects, which is a discrete data space in itself, in a smooth kernel
or pseudo-Euclidean space, and it is possible access such outputs of a GP for
structured data e.g. via efficient distance computations [56, 57]. An additional
contribution of the C7, is to propose a way to face an additional challenge posed
by the high computational complexity of GPs with respect to the number of
data points, and the structure kernel computation. As a speed-up, C7 applies
state-of-the-art approximation methods for the Gaussian Processes [58] as well
as the dissimilarity and kernel data [59], obtaining good-quality predictions in
linear time. Results on real world dataset shows that GP seem promising to pre-
dict time series of structured data, or relational data in general. By returning
an affine combination, they enable further processing, such as classification and
clustering. C7 also shows some future possible improvements of the proposed
method. In particular, usual hyperparameter optimization techniques depend on
a vectorial data representation [58] and one has to adapt them for a relational
case. Moreover, an affine combination might not be a sufficient data represen-
tation of the predicted point for some applications. For such cases, an inverse
problem has to be solved: finding the original point that maps to the affine com-
bination in the pseudo-Euclidean space. These are two interesting challenges of
this field of research.
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