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Abstract. Efficient learning of a data analysis task strongly depends on the data
representation. Many methods rely on symmetric similarity or dissimilarity repre-
sentations by means of metric inner products or distances, providing easy access
to powerful mathematical formalisms like kernel approaches. Similarities and dis-
similarities are however often naturally obtained by non-metric proximity measures
which can not easily be handled by classical learning algorithms. Major efforts
have been undertaken to provide approaches which can either directly be used for
such data or to make standard methods available for these type of data. We pro-
vide an overview about recent achievements in the field of learning with indefinite
proximities.

1 Introduction

The notion of pairwise proximities plays a key role in many machine learning algo-
rithms. The comparison of objects by a metric, often Euclidean, distance measure is a
standard element in basically every data analysis algorithm. Based on work of [1] and
others, the usage of similarities by means of metric inner products or kernel matrices has
lead to a great success of similarity based learning. Thereby the data are represented by
metric pairwise similarities only. We can distinguish similarities, indicating how close
or similar two items are to each other and dissimilarities as measures of the unrelated-
ness of two items. Given a set of N data items, their pairwise proximity (similarity or
dissimilarity) measures can be conveniently summarized in a N × N proximity matrix.
In the following we will refer to similarity and dissimilarity type proximity matrices as
S and D, respectively. In general at least symmetry is expected for S and D, sometimes
accompanied with non-negativity. These notions enter into models by means of sim-
ilarity or dissimilarity functions f (x, y) ∈ R where x and y are the compared objects.
The objects x, y may exist in a d-dimensional vector space, so that x ∈ Rd, but can also
be given without an explicit vectorial representation, e.g. biological sequences. How-
ever, as pointed out in [2], proximities often occur to be non-metric and their usage in
standard algorithms leads to invalid model formulations.

The function f (x, y) may violate the metric properties to different degrees. While
in general proximities are symmetric, the triangle inequality is often violated, proxim-
ities are negative, or self-dissimilarities are not zero. Such violations can be attributed
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to different sources. While some authors attribute it to noise [3], for some proximities
and proximity functions f this may be purposely caused by the measure itself. If noise
is the source, often a simple eigenvalue correction [4] can be used, although this can
become costly for large datasets. A recent analysis of the possible sources of negative
eigenvalues is provided in [5]. Such an analysis can be potentially helpful in, for ex-
ample, selecting the appropriate eigenvalue correction method applied to the proximity
matrix. Prominent examples for genuine non-metric proximity measures can be found
in the field of bioinformatics where classical sequence alignment algorithms produce
non-metric proximity values. Here the non-metric part of the data can actually contain
valuable information and should not be removed [6].

For non-metric inputs the support vector machine formulation [7] no longer leads
to a convex optimization problem, but provides a local optimum [8], only. Accordingly,
dedicated strategies for non-metric data are very desirable and the focus of this tutorial
paper. A recent survey paper on the topic has been published in [9].

The paper is organized as follows. First we outline some basic notation and some
mathematical formalism, related to machine learning with non-metric proximities also
used in the referenced literature. Subsequently we discuss different views and sources
of indefinite proximities and addresses the respective challenges in more detail. We also
link to appropriate algorithms for indefinite proximity learning. Section 5 concludes
this paper.

2 Notation and basic concepts

We now briefly review some concepts typically used in proximity based learning.

2.1 Kernels and kernel functions

Let X be a collection of N objects xi, i = 1, 2, ...,N, in some input space. Further, let
φ : X 7→ H be a mapping of patterns from X to a high-dimensional or infinite dimen-
sional Hilbert spaceH equipped with the inner product 〈·, ·〉H . The transformation φ is
in general a non-linear mapping to a high-dimensional spaceH and may in general not
be given in an explicit form. Instead a kernel function k : X × X 7→ R is given which
encodes the inner product inH . The kernel k is a positive (semi) definite function such
that k(x, x′) = φ(x)>φ(x′) for any x, x′ ∈ X. The matrix K := Φ>Φ is an N × N kernel
matrix derived from the training data, where Φ : [φ(x1), . . . , φ(xN)] is a matrix of im-
ages (column vectors) of the training data inH . The motivation for such an embedding
comes with the hope that the non-linear transformation of input data into higher di-
mensionalH allows for using linear techniques inH . Kernelized methods process the
embedded data points in a feature space utilizing only the inner products 〈·, ·〉H (kernel
trick) [10], without the need to explicitly calculate φ. The specific kernel function can
be very generic. Most prominent are the linear kernel with k(x, x′) = 〈φ(x), φ(x′)〉where
〈φ(x), φ(x′)〉 is the Euclidean inner product or the rbf kernel k(x, x′) = exp

(
−
||x−x′ ||2

2σ2

)
,

with σ as a free parameter. Thereby it is assumed that the kernel function k(x, x′) is
positive semi definite (psd).
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2.2 Krein space

A Krein space is an indefinite inner product space endowed with a Hilbertian topology.
Let K be a real vector space. An inner product space with an indefinite inner product
〈·, ·〉K on K is a bi-linear form where all f , g, h ∈ K and α ∈ R obey the following
conditions. Symmetry: 〈 f , g〉K = 〈g, f 〉K ; linearity: 〈α f + g, h〉K = α〈 f , h〉K + 〈g, h〉K ;
and 〈 f , g〉K = 0 implies f = 0. An inner product is positive definite if ∀ f ∈ K ,
〈 f , f 〉K ≥ 0, negative definite if ∀ f ∈ K , 〈 f , f 〉K ≤ 0, otherwise it is indefinite. A
vector space K with inner product 〈·, ·〉K is called an inner product space.

An inner product space (K , 〈·, ·〉K ) is a Krein space if we have two Hilbert spaces
H+ and H− spanning K such that ∀ f ∈ K we have f = f+ + f− with f+ ∈ H+ and
f− ∈ H− and ∀ f , g ∈ K , 〈 f , g〉K = 〈 f+, g+〉H+

− 〈 f−, g−〉H− . A finite-dimensional Krein-
space is a so called pseudo Euclidean space.

Indefinite kernels are typically observed by means of domain specific non-metric
similarity functions (such as alignment functions used in biology [11]), by specific ker-
nel functions - e.g. the Manhattan kernel k(x, y) = −||x − y||1, tangent distance ker-
nel [12] or divergence measures plugged into standard kernel functions [13]. Another
source of non-psd kernels are noise artifacts on standard kernel functions [14].

For such spaces vectors can have negative squared ”norm”, negative squared ”dis-
tances” and the concept of orthogonality is different from the usual Euclidean case.
Given a symmetric dissimilarity matrix with zero diagonal, an embedding of the data in
a pseudo-Euclidean vector space determined by the eigenvector decomposition of the
associated similarity matrix S is always possible [15] 1. Given the eigendecomposition
of S, S = UΛU>, we can compute the corresponding vectorial representation V in the
pseudo-Euclidean space by

V = Up+q+z

∣∣∣Λp+q+z

∣∣∣1/2 (1)

where Λp+q+z consists of p positive, q negative non-zero eigenvalues and z zero eigen-
values. Up+q+z consists of the corresponding eigenvectors. The triplet (p, q, z) is also
referred to as the signature of the Pseudo-Euclidean space. A more detailed presentation
of these mathematical aspects can be found in [2, 16, 17].

3 Indefinite proximity functions

Proximity functions can be very generic but are often restricted to fulfill metric proper-
ties to simplify the mathematical modeling and especially the parameter optimization.
In [16] a large variety of such measures was reviewed and basically most nowadays pub-
lic methods make use of metric properties. While this appears to be a reliable strategy
researchers from different disciplines have criticized this restriction as inappropriate in
multiple cases [18, 19, 5, 20].

In fact in [20] multiple examples from real problems show that many real life prob-
lems are better addressed by proximity measures which are not restricted to be metric.

1The associated similarity matrix can be obtained by double centering [2] of the dissimilarity matrix.
S = −JDJ/2 with J = (I − 11>/N), identity matrix I and vector of ones 1.
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Measure Application field
Dynamic Time Warping (DTW) [30] Time series or spectral alignment
Inner distance [31] Shape retrieval e.g. in robotics
Compression distance [32] Generic used also for text analysis
Smith Waterman Alignment [33] Bioinformatics
Divergence measures [13] Spectroscopy and audio processing
Non-metric modified Hausdorff [34] Template matching

Table 1: List of commonly used non-metric proximity measures in various domains

The triangle inequality is most often violated if we consider object comparisons in
daily life problems like the comparison of text documents, biological sequence data,
spectral data or graphs [21, 22, 23]. These data are inherently compositional and a
feature representation leads to information loss. As an alternative, tailored dissimilarity
measures such as pairwise alignment functions, kernels for structures or other domain
specific similarity and dissimilarity functions can be used as the interface to the data
[24, 25]. But also for vectorial data, non-metric proximity measures are common in
some disciplines. An example of this type is the use of divergence measures [13] which
are very popular for spectral data analysis in chemistry, geo- and medical sciences [26,
27, 28, 29], and are not metric in general. Also the popular Dynamic Time Warping
(DTW) [30] algorithm provides a non-metric alignment score which is often used as
a proximity measure between two one-dimensional functions of different length. In
image processing and shape retrieval indefinite proximities are often obtained by means
of the inner distance [31].

A list of non-metric proximity measures is given in Table 1. Most of these measures
are very popular but often violate the symmetry or triangle inequality condition or both.
Hence many standard proximity based machine learning methods like kernel methods
are not easy accessible for these data.

4 Learning models for indefinite proximities

A large number of algorithmic approaches assume that the data are given in a metric
vector space, typically an Euclidean vector space, motivated by the strong mathematical
framework which is available for metric Euclidean data. But with the advent of new
measurement technologies and many non-standard data this strong constraint is often
violated in practical applications and non-metric proximity matrices are more and more
common.

This is often a severe problem for standard optimization frameworks as used e.g.
for the Support Vector Machines (SVM), where psd matrices or more specific mercer
kernels, are expected [7]. The naive usage of non-psd matrices in such a context invali-
dates the guarantees of the original approach (like ensured convergence to a convex or
stationary point or the expected generalization accuracy to new points).

In [14] it was shown that the SVM not any longer optimizes a global convex function
but is minimizing the distance between reduced convex hulls in a pseudo-Euclidean

116

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



Eigenvalue
correction

Embedding
approaches

Models in the
Kreinspace

Models with
arbitrary 

proximity function

Models for 
non-psd data

Stay non-psd
Become

psd

Proxy
functions

Fig. 1: Schematic view of different approaches to analyze non-psd data

space leading to a local optimum.
Currently, the vast majority of approaches encodes such comparisons by enforcing

metric properties into these measures or by using alternative, in general less expres-
sive measures, which do obey metric properties. With the continuous increase of non-
standard and non-vectorial data sets non-metric measures and algorithms in Krein or
pseudo-euclidean spaces are getting more popular and have recently raised wide inter-
est in the research community [35, 36, 37, 38, 39, 40].

A schematic view summarizing the major research directions of the field is show in
Figure 1 .

Basically, there exist two main directions:

(A) Transforming the non-metric proximities to become metric

(B) Stay in the non-metric space by providing a method which is insensitive to metric
violations or can naturally deal with non-metric data

The first direction (A) can again be divided to the following sub-strategies:

• Applying direct eigenvalue corrections. The original data are decomposed by
an Eigenvalue decomposition and the eigenspectrum is corrected in different
ways to obtain a corrected psd matrix. A very simple form, avoiding the eigen-
decomposition, is to consider S · S′ which effectively squares the eigenvalues of
the matrix S while the eigenvectors remain the same.

• Embedding of the data in a metric space. Here, the input data are embedded into
a (in general Euclidean) vector space. A very simple strategy is to use Multi-
Dimensional Scaling (MDS) to get a two- dimensional representation of the dis-
tance relations encoded in the original input matrix. If an eigen-decomposition of

117

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



the proximity matrix is available a pseudo-Euclidean embedding as shown in (1)
can be used. Given the matrix S has true low rank this can be done with moderate
costs using the approach proposed in [41].

• Learning of a proxy function to the proximities. These approaches learn an alter-
native (proxy) psd representation with maximum alignment to the non-psd input
data. A prominent example is a SVM for indefinite input kernels provided by [3].

The second branch (B) is less diverse but one can identify at least two sub-strategies:

• Model definition based on the non-metric proximity function. Recent theoretical
work on generic dissimilarity and similarity functions is used to define models
which can directly employ the given proximity function with only very moderate
assumptions. Key work in this line can be found in [42, 43, 44].

• Krein space model definition. The Krein space is the natural representation for
non-psd data and some approaches have been formulated within this much less
restrictive, but hence more complicated, mathematical space. A recent proposal
with very generic implications can be found in [45].

As a general comment the approaches covered in (B) stay closer to the original
input data whereas for the strategy (A) the input data are in parts substantially modi-
fied which can lead to a reduced interpretability and also limits a valid out-of sample
extension in many cases. A detailed comparison, including algorithmic derivations is
provided in [9]. While many approaches are focused on similarities, also dissimilar-
ities can be employed in a similar form as shown in [41]. Specific realization of the
aforementioned concepts can also be found in these proceedings. The work of [46]
makes use of eigenvalue correction techniques to obtained positive definite kernels for
a dimension reduction approach. The approach by [47] is based on a median prototype
approach, following the branch (B) of our schema, where mixtures of dissimilarities are
used in a supervised learning task. Finally the paper [48] is addressing the potentially
negative impact of the positivation of graph kernels.

5 Conclusions

In this tutorial we briefly reviewed challenges and approaches common in the field of
learning with indefinite proximities. The more recent proposals in this domain focus
on the immediate processing of the data in the Krein space as well as on large scale
problems. Those methods which are directly working on the indefinite proximity matrix
are often non-sparse and use costly matrix operations [14, 49]. Large scale problems
for proximity data are typically addressed by matrix approximation approaches [50, 51],
now also available for indefinite proximities [41]. More recently also large scale sparse
probabilistic models where proposed which do not rely on metric proximity data but
use the empirical feature space [52, 53, 54].
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[24] Thomas Gärtner, John W. Lloyd, and Peter A. Flach. Kernels and distances for
structured data. Machine Learning, 57(3):205–232, 2004.

[25] Aleksandar Poleksic. Optimal pairwise alignment of fixed protein structures in
subquadratic time. pages 367–382, 2011.

[26] E. Mwebaze, P. Schneider, F.-M. Schleif, J.R. Aduwo, J.A. Quinn, S. Haase,
T. Villmann, and M. Biehl. Divergence based classification in learning vector
quantization. NeuroComputing, 74:1429–1435, 2010.

[27] N.Q. Nguyen, C.K. Abbey, and M.F. Insana. Objective assessment of sonographic:
Quality ii acquisition information spectrum. IEEE Transactions on Medical Imag-
ing, 32(4):691–698, 2013.

120

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



[28] J. Tian, S. Cui, and P. Reinartz. Building change detection based on satellite
stereo imagery and digital surface models. IEEE Transactions on Geoscience and
Remote Sensing, 2013.

[29] F. van der Meer. The effectiveness of spectral similarity measures for the analysis
of hyperspectral imagery. International Journal of Applied Earth Observation and
Geoinformation, 8(1):3–17, 2006.

[30] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 26(1):43–49, Feb 1978.

[31] Haibin Ling and David W. Jacobs. Using the inner-distance for classification of
articulated shapes. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA,
USA, pages 719–726. IEEE Computer Society, 2005.
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