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Abstract. In recent years, Deep Learning methods and architectures
have reached impressive results, allowing quantum-leap improvements in
performance in many difficult tasks, such as speech recognition, end-to-
end machine translation, image classification/understanding, just to name
a few. After a brief introduction to some of the main achievements of Deep
Learning, we discuss what we think are the general challenges that should
be addressed in the future. We close with a review of the contributions to
the ESANN 2016 special session on Deep Learning.

1 Introduction

Neural networks with many layers and specialized computational units, i.e. deep
networks [1], have reached impressive performances in many perceptual learning
tasks (e.g. [2, 3]), and recently also on other learning tasks (e.g. [4]). The
reason for this success is believed to hinge on the ability of deep networks to
exploit compositionality of internal representations, i.e. the network does learn
simple concepts (features) that are then used as components of internal dis-
tributed representations (hidden activities). Moreover, the presence of multiple
layers enables the creation of more and more complex concepts in a layer of
distributed representations with increasing distance of the layer from the input
neurons. There is a double computational advantage in this kind of architectural
organization: i) efficient learning of hidden representations, due to the fact that
each feature (i.e. output of a hidden unit) can be learned without having access
to the exponentially large number of configurations of the other features; ii) an
exponential gain in representational power, due to the fact that simpler concepts
represented in a layer of the network can be exploited as primitives by the next
layer to represent, in a combinatorial way, more complex concepts. The well
known problem with deep networks is that their training is difficult, can fall into
local extrema, takes long time and powerful computational resources, e.g. GPU,
and once trained the network is not flexible/adaptive to different new data. This
is mainly due to the fact that, in order to solve the highly nonlinear credit as-
signment problem underpinning the training of a neural network, gradient-based
techniques are used. Unfortunately, this class of techniques suffers from the
problem that was observed in the context of Recurrent Neural Networks but
that applies to deep networks as well, i.e. vanishing or exploding gradients [5].
In addition to that, the typical use of sigmoidal units introduces many sad-
dle points in the loss function that make training a painfully slow process [6].
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Fortunately, recent methodological (approximate training algorithms [7, 8, 9],
pre-training [10], rectified units [11], dropout [12]) and technological advances in
computer facilities (especially GPUs) [13], have allowed the successful training
of relatively deep networks with impressive performances [14].

More recent developments of deep learning concerns the ability to deal with
complex learning tasks thanks to the integration with different types of external
memory [15, 16, 17] and reinforcement learning [18, 4]. Generative deep models
have also been a recent subject of study (e.g. [19, 20, 21]), as well as semi-
supervised approaches (e.g. [22, 23, 24]). A trend that is gaining more and
more interest is the introduction of deep architectures into recurrent networks,
which are a special case of deep networks per se (e.g. [25, 26, 27, 28]). Effective
pre-training approaches for recurrent networks have been suggested [29, 30], as
well as a non trivial link between feed-forward networks and recurrent networks
[31].

Notwithstanding these achievements, there are still many issues that need to
be addressed. We try to discuss some of these in the following section.

2 Challenges

Up to now, progress in deep learning has mainly been achieved exploring archi-
tectural variants validated on an experimental basis only. Few attempts have
been made to understand why and how deep learning obtains such impressive
performances (e.g. [32]). Full understanding of how to choose structural fea-
tures as well as how to efficiently tune hyper-parameters of models (typically
performed through a validation set or a cross-validation approach thanks to ex-
tremely expensive, from a computational point of view, procedures) is still far
from being a reality. Although, many different types of computational units have
been proposed on the basis of their mathematical properties, current research
on their choice is mostly experimental and ad hoc.

Consequently, developing a deep theoretical background for tuning and as-
sessing the performance of these networks based on empirical data is essential.
Specifically, there is a need for a theoretical framework able to: i) measure the
complexity of the models, as a function of the number and type of computational
units, model topology/structure, model generalization, and learning efficiency;
ii) allow the definition of theoretically grounded strategies for tuning and assess-
ing the performance of models learned from empirical data; iii) develop regular-
ization schemes. A specific framework for assessment of unsupervised learning
is also needed.

Evolving (dynamically adapting structure) type deep learning networks con-
stitute a specific challenge.

Another important issue concerns computational efficiency. Currently deep
models need a significant amount of computational burden to reach state-of-the-
art performances on medium/large size datasets and mainly for off-line environ-
ments. Nowadays, however, the amount of available data is growing at a rapid
pace. Thus, the definition of a class of deep models amenable to be efficiently
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trained in the presence of big data as well as parallel and distributed computa-
tional infrastructures tailored for efficient deep learning computation are needed.
A step forward in this direction is to consider online learning from streams of
data. Dealing with a stream of data requires the use of bounded constant mem-
ory and almost linear time for learning on single input item. While constant
memory may not be a relevant issue for a deep network due to the fact that
most of the network architectures are static, i.e. the topology of the network is
defined before learning takes place and does not change with time, the constraint
on time complexity constitutes a serious challenge.

If we look at the nature of data for future applications of deep learning
technologies, it is evident that more and more application domains involve data
which can naturally be represented in structured form, such as sequences (time
series, audio and video signals, DNA, etc.), trees (XML documents, parse trees,
RNA, etc.), graphs (chemical compounds, social networks, parts of an image,
etc.). How to learn in these structured domains using neural networks has been
suggested in [33, 34, 35, 36, 37]. Due to the high combinatorial complexity under-
pinning structured domains, computationally efficient models to learn relations
among structured information at different levels of abstraction are needed. An
interesting approach to study could be the development of deep versions of Reser-
voir Computing models [38]. Incremental approaches provide another research
alternative, e.g. exploiting the framework introduced in [39].

3 Contributions to the ESANN 2016 Special Session on
Deep Learning

The Deep Learning special session includes papers covering many of the topics
discussed above.

For example, papers [40, 41, 42] address architectural aspects of deep net-
works of different nature. Specifically, in the context of Reservoir Computing
for sequence processing, the analysis presented in [40] aims at the study of ap-
proaches to develop and enhance multiple time-scale and hierarchical dynamics
in deep recurrent architectures. Actually, the paper suggests that stacked lay-
ers turn out to be important for the diversification of temporal representations.
The work presented in [41] explores a new way to combine deep learning with
ensemble methods. Starting from the pre-emphasis technique, where training
examples are weighted according to an auxiliary classifier so to take into ac-
count both the proximity of an input instance from the classification border and
its classification error, the paper investigates if combining it, Error Correcting
Output Code binarization, and simple forms of diversification (switching ensem-
bles) allows to obtain better performance. An architecture combining all these
components actually turns out to permit, on the MNIST benchmark, an error
reduction bigger than their separate application. A different aspect is covered by
[42], where convolutional neural networks for image processing are considered.
In this case, the proposal consists in the introduction of a new module, based
on the chirp-Z transform (a generalization of the discrete Fourier transform), to
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model translation, rotation and scaling invariances in images. Since the chirp-Z
transform is linear, two important features of the proposed module are differ-
entiability and scalability, which makes it particularly suited to the use in deep
architectures.

Contribution to the development and analysis of learning approaches are
given by papers [43, 44]. The work presented in [43] proposes to mitigate the
problem of adversarial and fooling examples encountered in deep networks deal-
ing with images and using the log-softmax loss function. Adversarial examples
are images affected by imperceptible changes that cause the network to return
different outputs with respect to the original ones. Fooling examples are images
not belonging to the input distribution to which the network assigns high classi-
fication confidence. The authors suggest that the origin of these problems is due
to the extrapolating nature of the log-softmax, and propose to replace the stan-
dard log-softmax loss in neural networks with the Generalized Learning Vector
Quantization cost function. This gives rise to Deep LVQ (DLVQ), which achieves
comparable performance on MNIST while being more robust against fooling and
adversarial examples. The aim of [44] is to give a better characterization of the
properties of the two most popular learning algorithms for training Restricted
Boltzmann Machines, i.e. Contrastive Divergence (CD) and Persistent Con-
trastive Divergence (PCD). Due to their approximate nature, both algorithms
yield significantly different biases and variances for stochastic gradient estimates
of individual data points. The authors, on the basis of empirical evidence on the
lower stochastic gradient estimate variance than exact sampling of CD, provide
support to the finding that CD can be used with smaller mini-batches or higher
learning rates than PCD.

We have discussed before the importance of pre-training techniques. Pa-
per [45] explores the use of self-adjoint auto-encoders to derive and test slightly
deeper structures than one-hidden-layer that could be suitable for pre-training.
Specifically, four- and six-layered networks are considered and empirically as-
sessed. The experimental results seem to suggest that deeper architectures are
to be preferred.

The contribution of paper [46] concerns the study of the role of deep learning
within a more complex scenario, i.e. learning over multivariate and relational
time-series with missing data where relations are modelled by a graph. Deep
learning is used to get latent representations of temporal data. These latent
representations allow to capture the temporal structure of the process jointly
with the relations between the different information sources. Moreover, they
do not only allow to predict future values for the time-series, but also to fill
in missing values. An advantage of this approach is the possibility to have a
uniform treatment of these two issues, instead of addressing them separately by
different methods.

Examples of applications of deep learning are given by [47, 48]. The problem
addressed in [47] concerns robust detection of pedestrians by using a vision sys-
tem combined with thermal cameras. This originates multispectral data. The
paper explores the potential of deep models for processing this kind of data.
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Specifically, two deep fusion architectures are used and their performances an-
alyzed. The obtained results show that a pre-trained late-fusion architecture
significantly outperforms the current state-of-the-art solution. In [48], the prob-
lem of recognizing crop types from aerial high resolution images collected by
drones is considered. A new hybrid neural network architecture which com-
bines histograms and convolutional units is proposed and studied. Empirical
assessment, comparing the proposed hybrid system versus single convolutional
and histogram-based models, shows that the proposed hybrid system performs
better than either model individually.
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