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Univ. Carlos III de Madrid - GAMMA-L+/Dept. Signal Theory and Communications
Av. Universidad, 30, 28911 Leganés, Madrid - Spain

Abstract. We explore if adding a pre-emphasis step to diversified deep
auto-encoding based classifiers serves to further improve their performance
with respect to those obtained just separately using pre-emphasis or diver-
sification. An experiment with a number of well-known databases, selected
because they have some complementary characteristics, shows that further
improvement does appear, the main condition for it simply being to se-
lect general and flexible enough pre-emphasis forms. Other manners of
combining diversity and pre-emphasis require more research effort, as well
as to investigate if other deep architectures can also obtain benefits from
these ideas.

1 Introduction

The theoretically unlimited expressive power –capability of establishing any
input-output correspondence– of shallow (one hidden layer) Multilayer Percep-
trons (MLPs) was proved in the late 1980s. Yet the limited available training
examples impose designs that can be far from this ideal case. The main obstacle
is the impossibility of estimating a sufficient number of weights.

Two principal ways of reducing this compromise have been proposed and
explored. The first is to build ensembles of MLPs –or other Learning Machines
(LMs)– by diversifying the training of each of them. Obiously, this permits
to desing overall architectures with a high number of weights. A considerable
number of methods for constructing ensembles has appeared. Committees con-
stitute a family of these methods, in which the learning units are trained with
different examples and their outputs are subsequently aggregated, usually by
simple procedures (direct averaging or majority voting, for example). Bagging
[1], in which bootstrap resampling of the examples provides the training sets
for the learners, and label switching [2], in which randomly switching examples’
labels serves to introduce diversity, are two relevant committee design methods.
There are also other ensemble building methods in which units’ learning and ag-
gregation are jointly addressed. Boosting merits to be mentioned among them,
because its basic idea, to train sequentially weak learners paying more attention
to the examples that offer more difficulty to be classified until the corresponding
iterative step, is not only very effective, but it opens many different avenues to
be implemented. Monographs [3, 4, 5] present details of these methods.

∗This work has been partly supported by Research Grant S2013/ICE-2845, CASI-CAM-
CM, provided by DGUI-Comunidad de Madrid.
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The second possibility of getting architectures with many weights, and con-
sequently with high expressive power, is to design deep MLPs, i.e., MLPs with
more hidden layers. We will refer to this kind of machines as Deep Neural Net-
works (DNNs). Although some particular families have a long history, to build
general forms of DNNs presented difficulties because the Back-Propagation (BP)
algorithm fails due to the appearance of vanishing derivatives. But, in [6], a first
example of representation training [7] proved to be useful. Representation train-
ing constructs hidden layers in a unsupervised form and adds a final supervised
layer. After [6], other representation algorithms, and also indirect design meth-
ods, in which layers are sequentially added, have been proposed. Even direct
training of DNNs has become possible by putting some care to avoid difficulties.
There is not room here for a more complete overview, but references [8, 9, 10]
will satisfy the interest of any reader.

A question emerges from the above background: Is there any advantage in
combining diversity and depth? Suprisingly, this possibility has not deserved
much attention, and less than a dozen of published works deal with this subject.
Among them, [11] is important because it presents a distortion-based diversi-
fication with (Deep) Convolutional NNs (DCNNs) to create the Multi-Column
CNNs (MC-CNNs), that give a performance record –0.21% error rate– for the
benchmark task of classifying the handwritten digits of the MNIST database [12].
But the only studies that apply traditional diversification techniques to DNNs
–in particular, to Deep Auto-Encoding (DAE) classifiers [13]– are [14, 15], in
which we applied bagging and switching, as well as binarization [4, 16] (a diver-
sification technique for multi-class problems), which revealed itself as the key to
obtain performance improvements.

We also explored how a simple alternative to boosting –which requires weak
learners– could be applied to the same type of DNNs [17]. That alternative
is pre-emphasis, i.e., weighting the training examples according to an auxiliary
classifier, taking into account the critical character of each sample, i.e., its prox-
imity to the classification border and its classification error [18, 19]. In [17],
we found that flexible enough pre-emphasis procedures allowed remarkable im-
provements, requiring a very modest computational cost increase in the design
phase, but not in operation, i.e., to classify unseen samples.

Here, we take a further step and check if combining binarization, simple
forms of diversification, and pre-emphasis methods allows to obtain even more
important performance improvements.

The rest of this contribution is structured as follows. Section 2 briefly reviews
the aspects of [14, 15, 17] that are relevant for this study. In Section 3, we present
the experimental framework we use, as well as the corresponding results and their
discussion. We close the paper with its main conclusions and indicating some
open research lines in the same direction.
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2 A review of previous research

In [14, 15], we investigated how a general representation deep architecture,
SDAE3 [13], must be modified to better accept diversification. We selected
SDAE3 because it is an architecture which is not adapted to image classification
problems, such as DCNNs, and, therefore, it was more appropriate for evalu-
ating the effects of the modifications we introduced. And the hidden layers of
representation architectures contain important information about the problem
to be solved, an advantage for some types of applications.

Two methods to include ensembles, bagging and switching, were used. The
first was applied to diversify SDAE3 machines whose final classifiers were bi-
narized when dealing with multi-class databases (G forms) and also to a single
SDAE3 whose classification step was diversified by bootstrap resampling (after
binarization, if dealing with multi-class problems) (T forms). T forms are the
only option for switching.

The main conclusions of [14, 15] are: 1) Binarization is necessary to get
advantage from applying the above mentioned conventional diversification tech-
niques (bagging, switching) to multi-class problems; 2) The performance im-
provements for T forms were bigger that for G forms, indicating that the DAE
unit is carrying out its function, disentangling the examples in a way that makes
diversification more effective; 3) The best performances for multi-class problems
are got by switching T forms with an appropriate Error Correcting Output Code
(ECOC) [16] binarization (a well known fact for shallow arquitectures).

In this paper, we present and discuss experiments with the MNIST database
and, to help to extract conclusions, also with MNIST-BASIC (MNIST-B) [13],
which consists of the same samples but with a smaller training set, and RECT-
ANGLES (RECT) [13], a binary problem with a similar data structure. The
corresponding best results in [15], obtained with the above mentioned ECOC,
a T structure and switching diversification (with N=101 learners and S=30%
switching rate) appear in Table 1. It is clear that they are much better than
those using an SDAE3. This is a very significant improvement, although it
requires much more computational effort.

In [17], we applied very general and flexible pre-emphasis forms also to
SDAE3. For multi-class problems we used as weighting factor for each example

α+ (1 − α)[β(1 − o(n)ac )2 + (1 − β)(1 − |o(n)ac − o
(n)
ac′

|)] (1)

where o
(n)
ac is the softmax output of the auxiliary classifier for the true class,

o
(n)
ac′

the nearest output among those corresponding to wrong classes, and α, β,
0 ≤ α, β ≤ 1, pre-emphasis parameters that permit to include a “moderating”
(no emphasis) term (α 6= 0) and, if α 6= 1, a term which is related with the
classification error (β 6= 0) and a term which considers the proximity to the
border (β 6= 1). Values of α, β, were established by means of the validation set.

The experimental percent error rate ± standard deviation obtained in [17] for
MNIST, MNIST-B, and RECT when applying (1) to an SDAE3 machine when
using a conventional SDAE3 as auxiliary classifier were excellent: See them in
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Fig. 1: Classifier architecture for the experiment. x: Input sample. PrE: Pre-
emphasis unit. DAE-3: 3-layer deep autoencoder. ECOCm: Problem coding
elements. SWEm: Switching ensembles (including majority voting). HDU: Ham-
ming distance unit. o: Class indicator.

Table 1. Simplified pre-emphasis forms did not offer such level of improvement,
supporting the decisive importance of applying a general and flexible enough
pre-emphasis mechanism.

To validate α and β needs around 100 SDAE3 designs, and there is not any
increase for classifying unseen samples. This convinced us of the interest of
exploring how to combine pre-emphasis with diversification procedures.

3 Experiments

As we said at the end of the Introduction, our objective is to check if applying
pre-emphasis to binarized and diversified DAE classifiers further improves their
performance. The experiments are defined and carried out with that purporse.

3.1 Experimental framework

We use again SDAE3 as the basic deep classifier. In our designs, its parameters
are: 3 hidden layers with 1000 units, one MLP as final classifier with one hidden
layer of 1000 units, 0.01 for the first layer training step, 0.02 for the rest, and 10%
of added noise level (different from [13]). With respect to the deep architecture,
we will use the best of [15], described in the previous section, with the same
parameters1. The overall machine (including pre-emphasis) appears in Figure 1.
The guides are the same machines without pre-emphasis. We carry out 10 runs
for each training.

1Note that we do not try to validate N and S jointly with α and β.
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SDAE3 ECOC-ST

No PrE PrE No PrE PrE

(α,β) (α,β)

MNIST 1.58±0.06 0.37±0.01 0.36±0.02 0.30±0.01

(0.4, 0.6) (0.3, 0.4)

MNIST-B 3.42±0.10 0.72±0.01 0.75±0.01 0.62±0.01

(0.3, 0.5) (0.2, 0.6)

RECT 2.40±0.13 0.87±0.04 1.10±0.02 0.76±0.03

(0.4, 0.3) (0.4, 0.3)

Table 1: Test error rate ± standard deviation (%) for the machines that we use
in the experiments.

MNIST, MNIST-B, and RECT are databases with dimensions 28×28, 256
levels for the two first (manuscript digits, 10-class problems) and 2 levels for
RECT, with 50000/10000/10000, 10000/2000/50000, and 10000/2000/50000 train-
ing/validation/tests samples, respectively.

3.2 Results and their discussion

Table 1 shows the results of the experiments, including the (α, β) values obtained
by validation. We include also the results for SDAE3.

The PrE ECOC-ST performances are systematically and clearly better than
any other results. We must remark that (α, β) are stably determined with
the validation set, and we must say that more restrictive pre-emphasis forms
seriously degrade these performances. Thus, we can conclude that combining
pre-emphasis with diversification for designing DAE classifiers is effective.

4 Conclusions and further work

According to our study, to combine general and flexible enough pre-emphasis
methods with ECOC binarized and diversified (by means of switching) DAE
classifiers –specifically, SDAE3s– permits an error reduction even bigger than
their separate application to solve three well-known problems (MNIST, MNIST-
B, and RECT) of complementary characteristics. For MNIST, the error rate is
pretty close to the absolute performance record, without using “ad hoc” architec-
tures. And we can add that there are clear possibilities of further improvements,
for example, by separately pre-emphasizing each binary problem that appears
after applying ECOC at the first step to MNIST and MNIST-B.

Additional work is necessary to combine the above with other procedures and
to investigate how to obtain similar advantages using other DNN architectures.
This is one of our present research lines.
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