
Clustering From Two Data Sources Using a
Kernel-Based Approach with Weight Coupling

Lynn Houthuys, Rocco Langone and Johan A. K. Suykens

Department of Electrical Engineering ESAT-STADIUS, KU Leuven
Kasteelpark Arenberg 10 B-3001 Leuven, Belgium

Email: {lynn.houthuys, rocco.langone, johan.suykens}@esat.kuleuven.be

Abstract. In many clustering problems there are multiple data sources
which are available. Although each one could individually be used for
clustering, exploiting information from all data sources together can be
relevant to find a clustering that is more accurate. Here a new model is
proposed for clustering when two data sources are available. This model is
called Binary View Kernel Spectral Clustering (BVKSC) and is based on
a constrained optimization formulation typical to Least Squares Support
Vector Machines (LS-SVM). The model includes a coupling term, where
the weights of the two different data sources are coupled in the primal
model. This coupling term makes it possible to exploit the additional
information from each other data source. Experimental comparisons with
a number of similar methods show that using two data sources can improve
the clustering results and that the proposed method is competitive in
performance to other state-of-the-art methods.

1 Introduction

In various application domains data from different sources are available. Many
real-world datasets have representations in the form of multiple data sources
(also called views) [1]. For example, web pages consist of both the page content
(text) and hyperlink information [2], images consist of the pixel arrays but can
also have captions associated with them [3], for social networks one could use
the user profile but also the friend links [4], and so on. Although each of the data
sources by itself might already be sufficient for a given learning task, additional
data sources often provide complementary information to each other which can
lead to an improved performance [5]. In this paper a new clustering model
is introduced, called Binary View Kernel Spectral Clustering (BVKSC), that
performs clustering when two different data sources are available.

Spectral clustering methods make use of the eigenvectors of some normalized
affinity matrix derived from the data to divide a data set into natural groups,
such that points within the same group are similar and points in different groups
are dissimilar to each other [6, 7, 8]. Kernel Spectral Clustering (KSC) [9] is a
well known clustering technique that represents a spectral clustering formulation
as a weighted kernel PCA problem, casted in the LS-SVM framework [10].

This paper shows how the clustering performance achieved by KSC on a indi-
vidual data source can be improved by exploiting information from two different
data sources. This is done by integrating two KSC models in the joint BVKSC
approach.
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2 Binary View Kernel Spectral Clustering

In this section the model Binary View Kernel Spectral Clustering (BVKSC)
is introduced. This is an extension to KSC where two data sources are used.
When training on one data source, the other data source is taken into account
by introducing a coupling term in the primal model. By [1] and [2] we denote
respectively the first and the second source.

Given training data D[1] = {x[1]i }Ni=1 ∈ R
d[1]

en D[2] = {x[2]i }Ni=1 ∈ R
d[2]

and
the number of clusters k, the primal formulation of the BVKSC model is:

min
w[1](l) ,w[2](l) ,

e[1](l),e[2]
(l)

,

b
[1]
l

,b
[2]
l

J =
1

2

k−1
∑

l=1

w[1](l)Tw[1](l) − 1

2N

k−1
∑

l=1

γle
[1](l)TD[1]−1

e[1]
(l)

+
1

2

k−1
∑

l=1

w[2](l)Tw[2](l)− 1

2N

k−1
∑

l=1

γle
[2](l)TD[2]−1

e[2]
(l)− ρ

k−1
∑

l=1

w[1](l)Tw[2](l)

s.t. e[1]
(l)

= Φ[1]w[1](l) + b
[1]
l 1N ,

e[2]
(l)

= Φ[2]w[2](l) + b
[2]
l 1N , l = 1, . . . , k − 1

where e[1]
(l) ∈ R

N and e[2]
(l) ∈ R

N are the projections, l = 1, . . . , k − 1 indicate

the score variables needed to encode k clusters, b
[1]
l and b

[2]
l are bias terms,

D[1]−1 ∈ R
N×N and D[2]−1 ∈ R

N×N are the inverse of the degree matrices

D[1] and D[2] with D
[v]
ii =

∑

j ϕ
[v](x

[v]
i )Tϕ[v](xj) for v = 1, 2 and γl ∈ R

+

are regularization constants. Φ[v] ∈ R
N×d

[v]
h is a feature matrix with Φ[v] =

[ϕ[v](x
[v]
1 )T ; . . . ;ϕ[v](x

[v]
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dimensional feature space, for v = 1, 2. Here it is imposed that d
[1]
h = d

[2]
h . The

primal model consist of taking two times the same formulation as seen in the

primal model of KSC but with an added term −ρ∑k−1
l=1 w

[1](l)Tw[2](l) , namely
the coupling term. ρ is an additional regularization constant and will be called
the coupling parameter. The coupling term describes the correlation between the
weights of the two sources, which is maximized. In this way the model performs
clustering for each data source while exploiting the information from the other
source.

By taking the Lagrangian of the primal problem, deriving the KKT optimal-
ity conditions and eliminating the primal variables, the dual problem results in
the following generalized eigenvalue problem:
[
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]
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where MD[v] = IN − 1

1TND[v]−11N
1N1TND

[v]−1

for v = 1, 2 are centering matrices

and where α[1](l) and α[2](l) are dual variables. The kernel matrices Ω[1,1] =
Φ[1]Φ[1]T and Ω[2,2] = Φ[2]Φ[2]T capture the similarity between data of the same

source. The kernel matrices Ω[1,2] = Φ[1]Φ[2]T and Ω[2,1] = Φ[2]Φ[1]T capture the
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two different sources. The eigenvalues associated with this eigenvalue problem
are 1/γl (as defined by Alzate and Suykens [9]) and ρ is a parameter to be tuned.

Notice that when ρ = 0 the dual problem equals two separate KSC problems.
This means that when ρ is chosen to be 0, the model equals KSC being applied
on both data sources separately.

Since the dimensions of the data sources might be different the kernel trick,
as applied by KSC, is not applicable here. A solution is to explicitly define the
feature maps ϕ[1] and ϕ[2] as follows:

ϕ[1](x[1]) =
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⎢
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Since Ω[1,2] = Φ[1]Φ[2]T , the ij-th element of the matrix Ω[1,2] is defined as:
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j ). Since the two kernel func-

tions K [1] : Rd[1] × R
d[1] → R and K [2] : Rd[2] × R

d[2] → R are defined per data
source, it is possible to choose a different kernel function for each source.

The cluster indicators for a certain training sample {x[1]i , x
[2]
i } are sign(e[1]

(1)

i ),

. . . , sign(e
[1](k−1)

i ), sign(e
[2](1)

i ), . . . , sign(e
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i ). The cluster assignment can
be done in two ways:

1. Separately for each data source. Hence two codebooks C[1] = {c[1]p }kp=1

and C[2] = {c[2]p }kp=1 are created and the result will be a separate cluster
assignment for each data source and these can differ from each other.

2. Together on both data sources. A set of new score variables is defined as

e
(l)
total = βe[1]

(l)

+ (1− β)e[2](l) . Only one codebook C = {cp}kp=1 is created
and the cluster assignments for both data sources are performed using these
new score variables. The value of β can be 0.5 to take the average, or a
value for β can be calculated based on the error covariance matrix (where
the error is computed in an unsupervised manner through the silhouette
value). Here β is chosen so that it minimizes the error, similarly to how it
is done for committee networks [11].

Finally following from the KKT conditions, for out-of-sample test data the
projections, and hence the clustering indicators, can be calculated as follows:

e
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[1,2]
test ∈ R

Ntest×N

and Ω
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Ntest×N are the kernel matrices evaluated using the test data
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with Ω
[1,1]
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[1]
testΦ

[1]T , Ω
[2,2]
test = Φ

[2]
testΦ

[2]T , Ω
[1,2]
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[1]
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[2]T and Ω
[2,1]
test =
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[1]T . The cluster assignment is done in the same manner as for the training
phase, so either separately or together (here the same β value is used as in the
training phase).

3 Experiments

In this section the results of BVKSC are shown on three datasets and com-
pared with two state-of-the-art methods introduced in [3] namely, Pairwise Co-
regularization and Centroid-Based Co-regularization multi-view spectral clus-
tering 1. In addition, the results are also compared to the best single KSC
model, i.e., the best result obtained by performing KSC on the separate data
sources. The first dataset used is a synthetic dataset [3] with d[1] = d[2] = 2
and N = 1000. The second dataset is called the UCI Handwritten digits dataset
[12] for which d[1] = 76, d[2] = 216 and N = 2000. The Reuters Multilingual
dataset [13] is the third and last dataset, where d[1] = 21531, d[2] = 24892 and
N = 1200. More information on these datasets can be found in the work of
Kumar et al. [3].

The results obtained by BVKSC depend on the choice of the kernel function
and its parameters (as for KSC) and on the choice of the coupling parameter
ρ. Since the BVKSC model allows for two different feature maps, two different
kernel parameters (one for each source) are tuned.

For the synthetic and the handwritten digits dataset the RBF kernel is cho-
sen. For the Reuters dataset an RBF kernel would not be an appropriate choice
because of the high dimensionality of the data. Instead, a normalized polyno-
mial kernel of degree 1 (linear) and 2 were considered. The tuning of the kernel
parameters and the coupling parameter ρ is done by means of 2-fold cross val-
idation where simulated annealing is used to optimize the performance. This
is repeated five times, so for a certain set of parameters there are ten different
clusterings, depending on the chosen training/validation set. The mean of the
performance criterion over these ten runs is then used as the evaluation metric
for a certain set of parameters. To assess the performance of the model the BLF
[9] and BAF [14] criteria were considered 2. The criterion is evaluated for each
data source and the total performance of the model is the mean of both.

To evaluate the cluster quality NMI [15] is used. The criterion is evaluated
for each data source and the total performance is the mean of the two values.

The results are depicted in Table 1. The table shows the results found for
two versions of BVKSC, one where the cluster assignment is done separately
for each source (denoted by (e[1], e[2])) and one where the cluster assignment is
done together for both sources (denoted by (etotal)). It also shows the results
with the Co-regularized methods from [3] where the kernel and co-regularization
parameters are tuned in the same manner as described before for BVKSC. The
table also depicts the runtime corresponding to clustering on the entire dataset.

1We thank the authors for providing the code to do the experiments.
2Only the best obtained results (obtained either with BLF or BAF) will be reported.
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Table 1: NMI and runtime (in seconds) results on test data. The highest NMI
values, and hence the best performing methods, are indicated in bold.

Method Synth data Handwritten Reuters
NMI Time (s) NMI Time (s) NMI Time (s)

Best Single KSC 0.232 0.416 0.559 0.755 0.325 4.79

Co-regularized (P)[3] 0.299 86.6 0.673 61.4 0.375 51.9

Co-regularized (C)[3] 0.338 58.6 0.659 66.9 0.360 51.6

BVKSC (e[1], e[2]) 0.324 5.38 0.559 7.07 0.379 41.1

BVKSC (etotal) 0.350 2.30 0.583 22.5 0.342 1.23e+03

For all three datasets, the proposed model BVKSC performs better than
(or at least equally good as) the best single KSC model. This indicates that
the additional information from a second source improves the result. For the
synthetic dataset as well as for the Reuters Multilingual dataset, BVKSC is also
able to perform better than the methods from [3].

For the UCI Handwritten digits dataset the first version of BVKSC (cluster
assignment is done separately for each source) performs equally well as the best
single KSC model. This result was obtained with ρ = 0 and is thus the special
case of BVKSC where the model equals KSC being applied on both sources
separately. This indicates that this version of BVKSC is not able to improve
the result. This can be explained by looking into the performance of KSC on
both sources separately. While the best performance of KSC on the first source
results in a NMI value of 0.559, for the best performance on the second source
the NMI equals 0.0146. This is a very low cluster quality and it seems that the
second data source does not contain much useful information. However, even for
this dataset, the second version of BVKSC (cluster assignment is done together
for both sources) is still able to improve the results.

Table 1 also shows that the runtime increases when using an additional
source, but also that BVKSC is faster than the other multi-source algorithms.
The only time BVKSC is slower, is for the second version on the Reuters dataset.
The high runtime here is due to the high dimensionality of the Reuters data and
the use of silhouette to determine β. In fact, the time to compute the silhouette
values is about 92% of the total runtime. If computational cost is critical, this
can be circumvented by using another criteria, using a fixed β or using the first
version of BVKSC.

4 Conclusion and perspectives

In this paper the problem of exploiting information from two data sources when
performing clustering is addressed. Although each of the data sources by itself
might already be sufficient for clustering, the aim is to improve the performance
by incorporating information from other sources. In this paper the model Binary
View Kernel Spectral Clustering is introduced, which combines information from
two data sources when performing clustering. The model is casted in the LS-

573

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



SVM framework [10] where weight coupling is done in the primal model by means
of a coupling term. The model is tested on three datasets. The obtained results
show the improvement of using multiple data sources. Most of the results are
also better than the results obtained for other methods that perform clustering
on multiple data sources.

In future work we aim to extend the model in order to exploit information
from more than two data sources. For this we may need to look into other
possible coupling schemes.
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