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Abstract. We refer to the framework of learning with mixed hard/soft
pointwise constraints considered in Gnecco et al., IEEE TNNLS, vol. 26,

pp. 2019-2032, 2015. We show that the optimal solution to the learn-
ing problem with hard bilateral and linear pointwise constraints stated
therein can be obtained as the limit of the sequence of optimal solutions
to the related learning problems with soft bilateral and linear pointwise
constraints, when the penalty parameter tends to infinity.

1 Introduction

In this work, we investigate constrained machine-learning problems in an en-
vironment based on both hard constraints (i.e, constraints whose violation is
not allowed) and soft constraints (i.e., constraints whose violation is admissible,
at the cost of some penalization). From a computational point of view, dealing
with hard constraints is usually more difficult than dealing with soft constraints.
So, often, hard-constrained optimization problems are solved by replacing them
with sequences of soft-constrained optimization problems, whose penalty terms
increase when increasing the index in each sequence. The motivation behind this
technique is that, under suitable conditions, the optimal solutions of these soft-
constrained optimization problems tend to those of the original hard-constrained
optimization problems [1, Section 10.11]. Likewise in [2], we focus here on the
case of pointwise constraints (i.e., constraints that are associated with a finite set
of examples, in which each element of the set defines one such constraint). This
is motivated by the fact that pointwise constraints are very often used in machine
learning problems, since they are able to model very general learning conditions.
As an extension of that work, we show that, under the framework considered
therein, the optimal solution to the learning problem with hard bilateral and
linear pointwise constraints can be obtained as the limit of the sequence of op-
timal solutions to the related learning problems with soft bilateral and linear
pointwise constraints, when the penalty parameter tends to infinity.
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The paper is organized as follows. In Section 2, we detail the problem of
learning from examples with bilateral pointwise constraints, in the general case
in which soft and hard constraints are both present in the problem formulation.
Section 3 compares the optimal solutions to the two problems obtained in the
particular cases in which there are only hard linear constraints, or only soft
linear constraints, and studies the limit behavior of the optimal solution to the
soft constrained learning problem, when the penalty parameter tends to infinity.
Finally, Section 4 is a short discussion.

2 Learning with mixed hard and soft pointwise constraints

We model an intelligent agent operating on a subset X of the feature space R
d

as one implementing a vector-valued function f := [f1, . . . , fn]
′ ∈ F , where F

denotes a suitable function space from X to R
n. We assume the availability of

prior knowledge in the form of constraints on f , which are expressed as follows:

∀x(h) ∈ XH ⊆ X : φi(x
(h), f(x(h))) = 0, i = 1, . . . , n . (1)

Here, it is assumed that the set XH := {x(1), x(2), . . . , x(|XH |)} has a finite num-
ber of elements, the functions φi are scalar-valued. Finally, n denotes the number
of constraints (for simplicity, the same as the number of components of f), which
have the form (1). We use the expression hard bilateral pointwise constraints to
denote constraints of the form (1). The term “hard” depends on the fact that
any such constraint cannot be violated. In the following, we denote by C any
collection of constraints of the form (1). Instead, we use the expression soft con-
straints to denote constraints whose violation is tolerated, at the cost of some
penalization. A typical case of soft constraints arising in machine learning is
the one associated with a finite labeled set, which models the classical frame-
work of learning from supervised examples. These can be expressed in terms of
V (f(x̃(κ)), ỹ(κ)) , where V : Rn × R

n 7→ [0,+∞) is a differentiable loss function
(i.e., a non-negative function satisfying V (z, z) = 0, ∀z ∈ R

n), x̃(κ) belongs to a
finite subset XS := {x̃(1), x̃(2), . . . , x̃(|XS |)} ⊆ X , and ỹ(κ) ∈ R

n denotes its label.
In the following, we assume X = R

d. For what concerns the choice of the
function space F , we consider the case in which, for any j ∈ Nn := {1, . . . , n}
and a positive integer k, the j-th component fj : X → R of f is an element of
the Sobolev space Wk,2(X ), which is the subset of L2(X ) whose elements have
weak partial derivatives up to the order k with finite L2(X )-norms. Concluding,
we set

F := Wk,2(X )× . . .×Wk,2(X )
︸ ︷︷ ︸

n times

. (2)

Moreover, we assume k > d
2 , because, under this condition, every element of

Wk,2(X ) admits a continuous representative, on which the constraints (1) can
be evaluated unambiguously, and F is a Reproducing Kernel Hilbert Space.
These are consequences of the Sobolev Embedding Theorem [3, Chapter 4].

We introduce a seminorm ‖ f ‖P,γ on F , through the pair (P, γ), where
P := [P0, . . . , Pl−1]

′ is a (vector-valued) finite-order differential operator of order
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k with l components, and γ ∈ R
n is a fixed vector with positive entries. Let

‖ fj ‖2P :=< Pfj , Pfj >:=
∑l−1

r=0

∫

X
(Prfj(x)Prfj(x))dx , ‖ f ‖2P,γ :=

∑n

j=1 γj <

Pfj , Pfj > , and µ ≥ 0 a fixed non-negative constant. Given a subset XS ⊂ X
with finite cardinality |XS | and a set of labeled examples (f(x̃(κ)), ỹ(κ)), κ =
1, . . . , |XS |, we denote by

Es(f) :=
1

2
‖ f ‖2P,γ +

µ

|XS |

|XS |
∑

κ=1

V (f(x̃(κ)), ỹ(κ)) (3)

the objective functional to be optimized (which includes the soft pointwise con-
straints), and by FC ⊆ F the subset of functions belonging to the function space
F (see (2)) that are also compatible with a given collection C of hard pointwise
constraints having the expressions (1). We consider the following problem.

Problem LMPC (Learning with Mixed Pointwise Constraints). The
optimization problem of determining a constrained (either local or global) min-
imizer fo of Es over FC is referred to as learning from the soft pointwise con-
straints associated with Es and the hard pointwise constraint collection C.

In the following, we focus on the case in which the operator P is invari-
ant under spatial translation, and has constant coefficients. For a function u

and a multi-index α with d non-negative entries αj , we write Dαu to denote
∂|α|

∂x
α1

1
...∂x

αd

d

u, where |α| :=
∑d

j=1 αj . Then, we assume for the generic com-

ponent Pi of the operator P the form Pi =
∑

|α|≤k bi,αD
α ,where the bi,α’s

are suitable real constants. We also define the formal adjoint of P as the op-
erator P ⋆ := [P ⋆

0 , . . . , P
⋆
l−1]

′ whose i-th component P ⋆
i has the form P ⋆

i :=
∑

|α|≤k(−1)|α|bi,αD
α . For simplicity, in the following we assume for P the form

Pf := [Pf1, Pf2, . . . , Pfn]
′ , i.e., we use an overloaded notation. Finally, we

define the operators L := (P ⋆)′P and, using again an overloaded notation,
γL := [γ1L, . . . , γnL]

′.
The next result is a simplified statement of [2, Theorem 4.1], and gives a rep-

resentation for an optimal solution fo to Problem LMPC. We use the following
terminology. For two vector-valued functions u(1) and u(2) with the same num-
ber of components, we denote by u(1) ∗ u(2) the vector-valued function v whose
first component is the convolution of the corresponding components of u(1) and
u(2), the second component is the convolution of the corresponding components

of u(1) and u(2), and so on, i.e., vj := (u(1) ∗ u(2))j := u
(1)
j ∗ u

(2)
j for every j.

A free-space Green’s function associated with a linear differential operator O is
a solution g to the distributional differential equation Og = δ, where δ is the
Dirac delta centered at the origin. Finally, we let γ−1g := [γ−1

1 g, . . . , γ−1
n g]′.

Theorem 2.1. (Representer theorem for Problem LMPC). Let us con-
sider an intelligent agent minimizing the functional (3) on F and satisfying a
given set of hard bilateral pointwise constraints expressed by

∀x(h) ∈ XH , φi(x
(h), f(x(h))) = 0 , i = 1, . . . , n ,
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in which φi ∈ C1(X × R
n). Let fo be any constrained local minimizer of the

functional (3). Assume that for any x(h) belonging to the finite set XH , the

Jacobian matrix ∂(φ1,...,φm)
∂(fo

1
,...,fo

m
) , evaluated in x(h), is invertible, Let also XH ∩XS =

∅, L be invertible on Wk,2(X ), and assume the existence of a free-space Green’s
function g of L that belongs to Wk,2(X ). Then, there exist |XH | vectors λ(h) ∈
R

n, each one associated with a point x(h) ∈ XH , such that fo satisfies

fo(·) = γ−1g(·) ∗





n
∑

i=1

ωH
i (·) +

|XS |
∑

κ=1

ωS
κ (·)



 , (4)

in which

ωH
i (·) := −

|XH |
∑

h=1

λ
(h)
i δ(· − x(h))∇fφi(x

(h), fo(x(h))) ,

ωS
κ (·) := −

µ

|XS |
δ(· − x̃(κ))∇fV (fo(x̃(κ)), ỹ(κ)) , (5)

λ
(h)
i denotes the i-th component of λ(h), and ∇fφi denotes the gradient w.r.t.

the second vector argument f of the function φi.

The distributions ωH
i and ωS

κ are named, respectively, the reaction of the i-th
hard pointwise constraint, and the reaction of the κ-th soft pointwise constraint.

3 Hard constraints as limit cases of soft constraints

As a case study, we consider Problem LMPC under the assumption of hard
bilateral and linear pointwise constraints expressed by

∀x(h) ∈ XH , φi(x
(h), f(x(h))) = f(x(h))− y

(h)
i = 0 , i = 1, . . . , n . (6)

One can notice that, in this case, the nonsingularity of the Jacobian matrix,
which is required in Theorem 2.1, holds true, since it takes the form of the iden-
tity matrix. Moreover, beside the hard bilateral and linear pointwise constraints
(6), other soft pointwise constraints expressed in terms of the quadratic loss

V (f(x̃(κ)), ỹ(κ)) =
1

2

n
∑

j=1

(

fj(x̃
(κ))− ỹ

(κ)
j

)2

(7)

may or may not be present in the problem formulation. Such constraints can be
interpreted as soft versions of the hard bilateral and linear pointwise constraints
(6). Finally, to simplify the notation, we set γj = γ̄ > 0, for every j = 1, . . . , n.

In the following, under the assumptions of Theorem 2.1, we investigate the
optimal solution to Problem LMPC with hard and soft constraints of the forms
(6) and (7), respectively, in the two degenerate cases (which were only briefly
mentioned in [2]) in which (i) there are only hard constraints; (ii) there are only
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soft constraints. Then, we compare the two cases.

Only soft constraints. For the case (i), the expression (4) reduces to:

fo
j (·) = −γ̄−1

|XS |
∑

κ=1

µ

|XS |
g(· − x̃(κ))

(

fo
j (x̃

(κ))− ỹ
(κ)
j

)

. (8)

Moreover, the evaluation of (8) on the set XS makes it possible to reduce the
problem of finding the unknown coefficients fo

j (x̃
(κ)) to the one of solving the

linear system

(

γ̄−1 µ

|XS |
GSS + I|XS |

)

F̃
(j)
S = γ̄−1 µ

|XS |
GSS Ỹ

(j)
S , where we have

defined the following matrices:

F̃S :=(F̃
(1)
S

|F̃
(2)
S

| · · · |F̃
(n)
S

) :=









fo
1 (x̃

(1)) fo
2 (x̃

(1)) · · · fo
n(x̃

(1))

fo
1 (x̃

(2)) fo
2 (x̃

(2)) · · · fo
n(x̃

(2))
· · · · · · · · · · · ·

fo
1 (x̃

(|XS |)) fo
2 (x̃

(|XS |)) · · · fo
n(x̃

(|XS |))









,

ỸS :=(Ỹ
(1)
S

|Ỹ
(2)
S

| · · · |Ỹ
(n)
S

) :=











ỹ
(1)
1 ỹ

(1)
2 · · · ỹ

(1)
n

ỹ
(2)
1 ỹ

(2)
2 · · · ỹ

(2)
n

· · · · · · · · · · · ·

ỹ
(|XS |)
1 ỹ

(|XS |)
2 · · · ỹ

(|XS |)
n











,

I|XS | denotes the |XS | × |XS | identity matrix, and GSS ∈ R
|XS |×|XH | is de-

fined in terms of its elements as GSS,r,s := g(x̃(r) − x̃(s)). Hence, F̃
(j)
S =

(

γ̄−1 µ

|XS |
GSS + I|XS |

)−1

γ̄−1 µ

|XS |
GSS Ỹ

(j)
S . Moreover, when GSS is invertible,

one has (making explicit the dependence of F̃
(j)
S on µ) limµ→+∞ F̃

(j)
S (µ) = Ỹ

(j)
S .

Only hard constraints. For the case (ii), the expression (4) reduces to:

fo
j (·) = −γ̄−1

|XH |
∑

h=1

λ
(h)
j g(· − x(h)) . (9)

Moreover, the evaluation of (9) on the set XH allows one to find the unknown co-

efficients λ
(h)
j by solving the linear system F

(j)
H = Y

(j)
H , γ̄−1GHHΛ(j) = −F

(j)
H ,

where we have defined the following matrices:

FH :=(F
(1)
H

|F
(2)
H

| · · · |F
(n)
H

)

:=









fo
1 (x

(1)) fo
2 (x

(1)) · · · fo
n(x

(1))

fo
1 (x

(2)) fo
2 (x

(2)) · · · fo
n(x

(2))
· · · · · · · · · · · ·

fo
1 (x

(|XH |)) fo
2 (x

(|XH |)) · · · fo
n(x

(|XH |))









,
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YH :=(Y
(1)
H

|Y
(2)
H

| · · · |Y
(n)
H

)

:=











y
(1)
1 y

(1)
2 · · · y

(1)
n

y
(2)
1 y

(2)
2 · · · y

(2)
n

· · · · · · · · · · · ·

y
(|XH |)
1 y

(|XH |)
2 · · · y

(|XH |)
n











,

Λ :=(Λ(1)|Λ(2)| · · · |Λ(n))

:=











λ
(1)
1 λ

(1)
2 · · · λ

(1)
n

λ
(2)
1 λ

(2)
2 · · · λ

(2)
n

· · · · · · · · · · · ·

λ
(|XH |)
1 λ

(|XH |)
2 · · · λ

(|XH |)
n











,

and GHH ∈ R
|XH |×|XH | (assumed to be invertible) is defined in terms of its ele-

ments as GHH,r,s := g(x(r) − x(s)). Hence, one gets Λ(j) = −γ̄G−1
HHY

(j)
H .

Comparison of the two cases, and limit behavior. In the following, we
assume the set XS for the case (i) to be equal to the set XH for the case (ii)
(this is not in contrast with the assumptions of Theorem 2.1, since here we
are considering two different instances of the problem), ỸS = YH , and GSS =
GHH invertible. Then, a comparison of the expressions (8) and (9) shows that,
when µ tends to +∞, the optimal solution (8) of the problem with only soft
constraints tends to the optimal solution (9) with only hard constraints, provided

that limµ→∞
µ

|XH |
(F̃

(j)
S (µ) − Ỹ

(j)
S ) = Λ(j) . This is indeed the case, since the

analysis above shows that

lim
µ→∞

µ

|XH |
(F̃

(j)
S (µ)− Ỹ

(j)
S ) = lim

µ→∞
−γ̄G−1

SSF̃
(j)
S (µ) = −γ̄G−1

SS Ỹ
(j)
S

= −γ̄G−1
HHY

(j)
H = Λ(j) . (10)

4 Discussion

We have shown that, in the learning framework of [2], the case of learning from
hard constraints only can be interpreted as a limit case of learning from soft
constraints only (see [2, Fig. 2 (a) and (c)] for simulation results in both cases).
An extension is expected for the learning problem with mixed constraints [2, Fig.
2 (b)], when all the hard constraints are replaced by soft constraints.
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