
Genetic Algorithm with Novel Crossover,

Selection and Health Check for Clustering

A. H. Beg and Md Zahidul Islam

School of Computing and Mathematics

Charles Sturt University, Panorama Avenue

Bathurst 2795, Australia

Abstract. We propose a genetic algorithm for clustering records, where the

algorithm contains new approaches for various genetic operations including

crossover and selection. We also propose a health check operation that finds sick

chromosomes of a population and probabilistically replaces them with healthy

chromosomes found in the previous generations. The proposed approaches improve

the chromosome quality within a population, which then contribute in achieving

good clustering solution. We use fifteen datasets to compare our technique with five

existing techniques in terms of two cluster evaluation criteria. The experimental

results indicate a clear superiority of the proposed technique over the existing

techniques.

1. Introduction

Clustering is a well-known data mining technique. It aims to group similar records in

one cluster and dissimilar records in different clusters. It has a wide range of

applications including business, machine learning and social network analysis [1-6].

There are many existing clustering algorithms. K-means is one of the most popular

techniques for its simplicity and light weight i.e. low complexity. However, a drawback

of K-means is its requirement of a user defined number of clusters (k). In reality it can

be difficult for a user to estimate the appropriate number of clusters in advance [4, 5,

7]. Therefore, clustering techniques that are capable of finding the number of cluster

automatically are highly desirable.

Moreover, another drawback of K-means is that it has tendency to getting stuck at

local optima resulting in poor quality clustering results [4, 5]. In order to overcome these

limitations in recent years many GA based [2-6] approaches for clustering were

proposed that achieved encouraging results. Genetic algorithms (GA) are heuristic

search and optimization techniques based on the concepts of natural activities of genes,

individual selection and evolution process [2-6].

In GA a chromosome is considered to be a clustering solution and a gene of a

chromosome is considered to be the center of a cluster. However, there are some

limitations of the existing GA based clustering techniques. Generally, the number of

genes of a chromosome are generated randomly in the initial population. The genes are

also selected randomly from a dataset instead of carefully choosing them. Careful

selection of genes increases the possibility of getting high quality chromosomes in the

initial population. Having high quality chromosomes in the initial population is more

likely to produce a good quality clustering solution [4, 5].

575

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Recently, an existing technique called GenClust [4] produces high quality

chromosomes in the initial population and thereby obtain good clustering result.

However, the complexity for generting the initial population is high 𝑂(𝑁2), where 𝑁 is

the number of records in a dataset. Moreover, GenClust also requires a user to define

different radius values for generating the initial population. It can be very difficult for a

user to define the radius values for each individual dataset separately.

Moreover, the gradual health improvement is also crucial for a GA to finally find a

good quality chromosome. In each generation, GA goes through some genetic operations

such as crossover and mutation. The crossover and mutation operation can improve the

fitness/heath of a chromosome, but they can also decrease the health of some

chromosomes. Therefore, it is important to check the chromosome health at the end of

each generation.

In this paper, we propose a genetic algorithm based clustering technique called

“Genetic Algorithm with Novel Crossover, Selection and Health Check for Clustering

(GCS)” that solves the above mentioned issues. We now introduce the main

contributions of this study as follows. Following the approach of an existing technique

[5] GCS produces high quality chromosomes in the initial population through two

phases: a deterministic phase and a random phase . It does not require any user input on

the number of cluster (k) and keeps the complexity low, 𝑂(𝑁). GCS uses two phases of

selection operation in order to increase the quality of chromsomes in a population. It also

modifies the process which selects a pair of chromosomes in a crossover operation

through two phases in order to increase the possibility of getting better quality offspring

chromosomes.

Moreover, the presence of healthy chromosomes (chromosomes with high fitness

values) in a population increases the possibility of getting good quality of the final

clustering result. Therefore, GCS uses a Health Check operation in order to find sick

chromosomes and replaces them with healthy chromosomes. It also uses the elitist

operation after each genetic operation within a generation, in order to keeps track of the

best solution obtained so far. It ensures that the best chromosome is not lost.

We evaluate the proposed technique by comparing its performance with the

performance of five high quality existing techniques namely AGCUK [2], GAGR [3],

GenClust [4], K-means [7] and K-means ++ [8]. Two evaluation criteria called

Silhouette coefficient [1] and DB index [2, 5] are used. Detail experimental results on

fifteen (15) datasets indicate clear superiority of the proposed technique over five

existing techniques. Therefore, the main contribution of the proposed technique can be

summarized as follows.

 Two phases of selection operation.

 Two phases of crossover operation.

 Health check operation.

 Elitist operation after each genetic operation.
The rest of the paper is organized as follows: We present our novel technique in

Section 2. In Section 3 we discuss experimental results and in Section 4 we give the

concluding remarks.

2. Our Technique

We now briefly explain the main steps of GCS and their advantages as follows.

576

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Step 1- Normalization: GCS takes a dataset D as input. It first normalizes the dataset D

in order to weigh each attribute equally regardless of their domain sizes. The

normalization brings the domain range of each numerical attribute of the dataset between

0 and 1 [4, 5].

Step 2- Population Initialization: We prepare an initial population (𝑷) of 2× |r|

chromosomes, |r| chromosomes from the deterministic phase and |r| chromosomes from

the random phase. The value of r is set to10, in this study. In the deterministic phase,

GCS uses a set of predefined numbers of genes in order to produce a set of chromosomes.

The default set of predefined k is {2, 3, 4……10} where the size of the predefined set is

nine. GCS uses each element of the set as the predefined number of cluster (k) in K-

means and thus produce a clustering solution. It then runs K-means five times for each

element and thus produce five chromosomes. Hence, it produces altogether 5 * 9 = 45

chromosomes in the deterministic phase. GCS then selects top |r| chromosomes

(according to their fitness values) from these 45 chromosomes. Typically the value of k

of a dataset varies between 2 to 10 which is supported by the empirical analysis of

DeRanClust [5]. Therefore, GCS uses the set of k {2, 3, 4….10} in the deterministic

phase.

However, in many dataset the actual k values are more than 10. In order to handle

such situation GCS uses the random phase. For each chromosome it generates the k value

randomly between 2 to √𝑁 (N is the number of records in a data set) and then selects k

number of records randomly to from k genes of a chromosome. GCS produces |r|

chromosomes in the random phase. Thus, GCS produces 2× |r| chromosomes from two

phases. It then find the best chromosome 𝑃𝑏 from 2× |r| chromosomes and stores it for

the elitist operation. The fitness of each chromosome is calculated using DB Index [2,

5]. A small value of DB Index indicate a good clustering result, therefore the fitness is

computed by 1/DB.

Step 3- Two Phases of Selection Operation: Starting from generation 2, GCS applies

the two phases of selection operation in order to get a new population for the next genetic

operations such as crossover and mutation. In Phase 1, GCS selects the top |r|

chromosomes (according to the fitness values) from 2× |r| chromosomes of the current

population. In Phase 2, it selects |r| chromosomes probabilistically from a set of 3× |r|

chromosomes, which is made of the remaining bottom |r| chromosomes of the current

population and 2× |r| chromosomes from the last population of the immediate previous

generation.

Step 4- Crossover Operation: GCS performs a crossover operation on a pair of

chromosomes, where each chromosome is first divided into two segments and then the

chromosomes swap segments (like any single point crossover [6]) in order to generate

a pair of offspring chromosomes. We propose two phases of crossover operation in

GCS. In Phase 1, GCS selects 2× |r| -1 pair of chromosomes, where in each pair the 1st

chromosome is always the best chromosome of the population. All other chromosomes

are chosen one by one to be the 2nd chromosome of a pair. All pairs have different 2nd

chromosome.

In order to facilitate extensive exploration, GCS applies this crossover operation

five times on each pair and thereby generates 5 different pairs of offsprings. That is it

produces altogether 5 × (2× |r| -1) × 2 chromosomes, from which it then selects the top

|r| chromosomes. This phase increases the possibility of getting high quality offspring

chromosomes. In order to maintain the random exploration ability, GCS in Phase 2 also

577

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

uses the traditional roulette wheel [4, 5] approach for selecting pairs of chromosomes

for crossover. In Phase 2, it selects |r| pairs of chromosomes and applies the traditional

single point crossover. GCS then produces |r| offspring chromosomes from Phase 2.

Thus, from the two phases it finally produces 2× |r| chromosomes.

 Step 5- Mutation Operation: Following the approaches of existing techniques [2, 5]

GCS applies division and absorption mutation operation. For the best chromosome

GCS applies both the division and absorption. For all remaining chromosomes it

randomly applies either division or absorption operation. For the division operation

GCS find the sparsest cluster and then divides the cluster into two clusters by applying

K-means where the value of k is set to 2. In the absorption operation GCS finds two

closest clusters and merges those into one cluster. The clusters that has minimum seed

to seed distance is considered as the closest one.

Step 6- Health Check Operation: GCS applies the proposed health check operation

after I generations. In this study we use I = 20. GCS prepares a set of chromosomes S,

where it stores the best chromosomes of each generation for the first I generations. It

then calculates the average fitness 𝐹𝑑 of the chromosomes in S. If the fitness of a

chromosome in the current population is less than 𝐹𝑑, the chromosome is selected as

sick. GCS then probabilistically selects a chromosome from S to replace the sick

chromosome.

Step 7-Elitist Operation: Generally GA [2-5] applis the the elitist operation at the end

of each generation. However, GCS applies the elitist operation at the end of each

genetic operations within a generation. If the fitness of the worst chromosome 𝑃𝑤
𝑖 of the

i-th population (i.e. the current population) is less than the fitness of the best

chromosome 𝑃𝑏
𝐴𝑙𝑙 (from all previous generation) then 𝑃𝑤

𝑖 is replaced with 𝑃𝑏
𝐴𝑙𝑙 .

Moreover, if the fitness of the best chromosome 𝑃𝑏
𝑖 of the i-th population has the higher

fitness than 𝑃𝑏
𝐴𝑙𝑙 then 𝑃𝑏

𝐴𝑙𝑙 is replaced by 𝑃𝑏
𝑖 .

GCS continues step 3 to step 7 for the total number (user defined) of iterations. At

the end of all iterations GCS selects 𝑃𝑏
𝐴𝑙𝑙 as the best chromosome. The genes of the

best chromosome represent the cluster centers and records are allocated to their closest

seeds to form the final clusters.

3. Experimental Results and Discussion

We empirically compare the performance of our technique with five existing techniques

called AGCUK [2], GAGR [3], GenClust [4], K-Means [7] and K-means ++ [8] on 15

natural datasets (shown in Table 1) that are available in the UCI machine learning

repository [9]. The existing techniques are shown in the literature [2-4] are recent, of

high quality and to be better than many other techniques. For the experimentation of

AGCUK, GAGR, GenClust and GCS we consider the population size to be 20. The

number of generations/iterations for all techniques set to be 50 for a fair comparison.

The cluster number in GGAR and AGCUK are generated randomly in a range 2 to √𝑁

(N is the number of records in a data set). We run each technique 20 times on each dataset

and we take the average result. Two evaluation criteria: Silhouette Coefficient and DB

Index are used. The higher value of Silhouette Coefficient represents the better clustering

result and the lower value of DB index indicate the better clustering result.

578

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 1, Fig. 2, Fig. 3, and Fig. 4 shows

that GCS performs better than all other

techniques in all 15 datasets based on

Silhouette Coefficient and DB Index.

Moreover, in 14 out of 15 datasets the

standard deviation of GCS do not overlap

the standard deviation of GenClust based on

Silhouette Coefficient. The standard

deviation of GCS do not overlap the

standard deviation of AGCUK in 12 out 15

datasets based on Silhouette Coefficient.

Note that the cases where the standard

deviation of GCS overlap with the standard

deviations of other techniques are indicated

with an arrow.

Dataset Records

Glass Identification (GI) 214

Vertebral Column (VC) 310

Ecoli (EC) 336

Leaf (LF) 340

Liver Disorder (LD) 345

Dermatology (DT) 366

Blood Transfusion (BT) 748

Pima Indian Diabetes (PID) 768

Statlog Vehicle Silhouettes (SV) 846

Bank Note Authentication (BN) 1372

Yeast (YT) 1484

Image Segmentation (IS) 2310

Wine Quality (WQ) 4898

Page Blocks Classification (PBC) 5473

MAGIC Gamma Telescope (MGT) 19020

Table 1: Dataset at a glance

Fig. 1: Silhouette Coefficient of the techniques on eight datasets

Fig. 2: Silhouette Coefficient of the techniques on seven datasets

Fig. 3: DB Index of the techniques on eight datasets

579

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

Fig. 4: DB Index of the techniques on seven datasets

The right most column in Fig. 2 and Fig.4 show the average Silhouette Coefficient

and DB Index of all techniques on all datasets. GCS achieves clearly better results on

an average than all other techniques without any overlapping of the standard deviations.

We believe that this is a very strong result in order to demonstrate the superiority of the

proposed technique over a number of recent and high quality clustering techniques.

Conclusion

GCS uses proposed crossover and selection approaches in order to increase the quality

of chromosomes in a population. It also ensures gradual health improvement of the

chromosomes through the proposed health check operation. The experimental results

based on two commonly used cluster evaluation criteria clearly indicate superiority of

the proposed technique over five existing techniques. Our future research plan includes

the proposal of new and effective genetic operations in order to achieve better clustering

results.

References

[1] P. N. Tan, M. Steinbach, V. Kumar, Introduction to data mining, 1st ed., Pearson Addison Wesley,

2006.

[2] Y. Liu, X. Wu, and Y. Shen, Automatic clustering using genetic algorithms, Applied Mathematics and
Computation, 218:1267-1279, Elsevier, 2011.

[3] D. Chang, X. Zhang, and C. Zheng, A genetic algorithm with gene rearrangement for K-means

clustering, Pattern Recognition, 42:1210-1222, Elsevier, 2009.

[4] M.A. Rahman, and M.Z. Islam, A hybrid clustering technique combining a novel genetic algorithm

with K-Means, Knowledge-Based Systems, 71:345-365, Elsevier, 2014.

[5] A. H. Beg, and M.Z. Islam, Clustering by Genetic Algorithm- High Quality Chromosome Selection
for Initial Population, IEEE 10th Conf. on Industrial Electronics and Applications, pp. 129-134, 2015.

[6] P. Peng, et al., Reporting and analyzing alternative clustering solutions by employing multi-objective

genetic algorithm and conducting experiments on cancer data, Knowl-Based Syst. Elsevier, 56:108-
122, 2014.

[7] S.P, Lloyd, Least squares quantization in PCM. IEEE Transactions on Information Theory, 28 (2):

129-13, 1982.

[8] D. Arthur, S. Vassilvitskii, k-means++: The Advantages of Careful Seeding, SODA '07 Proceedings

of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.

[9] UCI Machine Learning Repository, Retrieved from http://archive.ics.uci.edu/ml/ (June 22, 2013).

580

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

http://www.sciencedirect.com/science/journal/09507051
http://www.sciencedirect.com/science/journal/09507051/71/supp/C
https://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

