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Abstract. We propose a genetic algorithm for clustering records, where the 

algorithm contains new approaches for various genetic operations including 

crossover and selection. We also propose a health check operation that finds sick 

chromosomes of a population and probabilistically replaces them with healthy 

chromosomes found in the previous generations. The proposed approaches improve 

the chromosome quality within a population, which then contribute in achieving 

good clustering solution. We use fifteen datasets to compare our technique with five 

existing techniques in terms of two cluster evaluation criteria. The experimental 

results indicate a clear superiority of the proposed technique over the existing 

techniques. 

1. Introduction 

Clustering is a well-known data mining technique. It aims to group similar records in 

one cluster and dissimilar records in different clusters. It has a wide range of 

applications including business, machine learning and social network analysis [1-6]. 

There are many existing clustering algorithms. K-means is one of the most popular 

techniques for its simplicity and light weight i.e. low complexity. However, a drawback 

of K-means is its requirement of a user defined number of clusters (k). In reality it can 

be difficult for a user to estimate the appropriate number of clusters in advance [4, 5, 

7]. Therefore, clustering techniques that are capable of finding the number of cluster 

automatically are highly desirable. 

Moreover, another drawback of K-means is that it has tendency to getting stuck at 

local optima resulting in poor quality clustering results [4, 5]. In order to overcome these 

limitations in recent years many GA based [2-6] approaches for clustering were 

proposed that achieved encouraging results. Genetic algorithms (GA) are heuristic 

search and optimization techniques based on the concepts of natural activities of genes, 

individual selection and evolution process [2-6].  

In GA a chromosome is considered to be a clustering solution and a gene of a 

chromosome is considered to be the center of a cluster. However, there are some 

limitations of the existing GA based clustering techniques. Generally, the number of 

genes of a chromosome are generated randomly in the initial population. The genes are 

also selected randomly from a dataset instead of carefully choosing them. Careful 

selection of genes increases the possibility of getting high quality chromosomes in the 

initial population. Having high quality chromosomes in the initial population is more 

likely to produce a good quality clustering solution [4, 5].  
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Recently, an existing technique called GenClust [4] produces high quality 

chromosomes in the initial population and thereby obtain good clustering result. 

However, the complexity for generting the initial population is high 𝑂(𝑁2), where 𝑁 is 

the number of records in a dataset. Moreover, GenClust also requires a user to define 

different radius values for generating the initial population. It can be very difficult for a 

user to define the radius values for each individual dataset separately. 

Moreover, the gradual health improvement is also crucial for a GA to finally find a 

good quality chromosome. In each generation, GA goes through some genetic operations 

such as crossover and mutation. The crossover and mutation operation can improve the 

fitness/heath of a chromosome, but they can also decrease the health of some 

chromosomes. Therefore, it is important to check the chromosome health at the end of 

each generation. 

In this paper, we propose a genetic algorithm based clustering technique called 

“Genetic Algorithm with Novel Crossover, Selection and Health Check for Clustering 

(GCS)” that solves the above mentioned issues. We now introduce the main 

contributions of this study as follows. Following the approach of an existing technique 

[5] GCS produces high quality chromosomes in the initial population through two 

phases: a deterministic phase and a random phase . It does not require any user input on 

the number of cluster (k) and keeps the complexity low, 𝑂(𝑁). GCS uses two phases of 

selection operation in order to increase the quality of chromsomes in a population. It also 

modifies the process which selects a pair of chromosomes in a crossover operation 

through two phases in order to increase the possibility of getting better quality offspring 

chromosomes.  

Moreover, the presence of healthy chromosomes (chromosomes with high fitness 

values) in a population increases the possibility of getting good quality of the final 

clustering result. Therefore, GCS uses a Health Check operation in order to find sick 

chromosomes and replaces them with healthy chromosomes. It also uses the elitist 

operation after each genetic operation within a generation, in order to keeps track of the 

best solution obtained so far. It ensures that the best chromosome is not lost. 

We evaluate the proposed technique by comparing its performance with the 

performance of five high quality existing techniques namely AGCUK [2], GAGR [3], 

GenClust [4], K-means [7] and K-means ++ [8]. Two evaluation criteria called 

Silhouette coefficient [1] and DB index [2, 5] are used. Detail experimental results on 

fifteen (15) datasets indicate clear superiority of the proposed technique over five 

existing techniques. Therefore, the main contribution of the proposed technique can be 

summarized as follows. 

 Two phases of selection operation. 

 Two phases of crossover operation. 

 Health check operation. 

 Elitist operation after each genetic operation. 
The rest of the paper is organized as follows: We present our novel technique in 

Section 2. In Section 3 we discuss experimental results and in Section 4 we give the 

concluding remarks. 

2. Our Technique 

We now briefly explain the main steps of GCS and their advantages as follows.  
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Step 1- Normalization: GCS takes a dataset D as input. It first normalizes the dataset D 

in order to weigh each attribute equally regardless of their domain sizes. The 

normalization brings the domain range of each numerical attribute of the dataset between 

0 and 1 [4, 5]. 

Step 2- Population Initialization: We prepare an initial population (𝑷) of 2× |r| 

chromosomes, |r| chromosomes from the deterministic phase and |r| chromosomes from 

the random phase. The value of r is set to10, in this study. In the deterministic phase, 

GCS uses a set of predefined numbers of genes in order to produce a set of chromosomes. 

The default set of predefined k is {2, 3, 4……10} where the size of the predefined set is 

nine. GCS uses each element of the set as the predefined number of cluster (k) in K-

means and thus produce a clustering solution. It then runs K-means five times for each 

element and thus produce five chromosomes. Hence, it produces altogether 5 * 9 = 45 

chromosomes in the deterministic phase. GCS then selects top |r| chromosomes 

(according to their fitness values) from these 45 chromosomes. Typically the value of k 

of a dataset varies between 2 to 10 which is supported by the empirical analysis of 

DeRanClust [5]. Therefore, GCS uses the set of k {2, 3, 4….10} in the deterministic 

phase. 

However, in many dataset the actual k values are more than 10. In order to handle 

such situation GCS uses the random phase. For each chromosome it generates the k value 

randomly between 2 to √𝑁 (N is the number of records in a data set) and then selects k 

number of records randomly to from k genes of a chromosome. GCS produces |r| 

chromosomes in the random phase. Thus, GCS produces  2× |r| chromosomes from two 

phases. It then find the best chromosome 𝑃𝑏 from 2× |r| chromosomes and stores it for 

the elitist operation. The fitness of each chromosome is calculated using DB Index [2, 

5]. A small value of DB Index indicate a good clustering result, therefore the fitness is 

computed by 1/DB. 

Step 3- Two Phases of Selection Operation: Starting from generation 2, GCS applies 

the two phases of selection operation in order to get a new population for the next genetic 

operations such as crossover and mutation. In Phase 1, GCS selects the top |r| 

chromosomes (according to the fitness values) from 2× |r| chromosomes of the current 

population.  In Phase 2, it selects |r| chromosomes probabilistically from a set of 3× |r| 

chromosomes, which is made of the remaining bottom |r| chromosomes of the current 

population and 2× |r| chromosomes from the last population of the immediate previous 

generation. 

Step 4- Crossover Operation: GCS performs a crossover operation on a pair of 

chromosomes, where each chromosome is first divided into two segments and then the 

chromosomes swap segments (like any single point crossover [6]) in order to generate 

a pair of offspring chromosomes. We propose two phases of crossover operation in 

GCS. In Phase 1, GCS selects 2× |r| -1 pair of chromosomes, where in each pair the 1st 

chromosome is always the best chromosome of the population. All other chromosomes 

are chosen one by one to be the 2nd chromosome of a pair. All pairs have different 2nd 

chromosome. 

In order to facilitate extensive exploration, GCS applies this crossover operation 

five times on each pair and thereby generates 5 different pairs of offsprings. That is it 

produces altogether 5 × (2× |r| -1 ) × 2 chromosomes, from which it then selects the top 

|r| chromosomes. This phase increases the possibility of getting high quality offspring 

chromosomes. In order to maintain the random exploration ability, GCS in Phase 2 also 
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uses the traditional roulette wheel [4, 5] approach for selecting pairs of chromosomes 

for crossover. In Phase 2, it selects |r| pairs of chromosomes and applies the traditional 

single point crossover. GCS then produces |r| offspring chromosomes from Phase 2. 

Thus, from the two phases it finally produces 2× |r| chromosomes. 

 Step 5- Mutation Operation: Following the approaches of existing techniques [2, 5] 

GCS applies division and absorption mutation operation. For the best chromosome 

GCS applies both the division and absorption. For all remaining chromosomes it 

randomly applies either division or absorption operation. For the division operation 

GCS find the sparsest cluster and then divides the cluster into two clusters by applying 

K-means where the value of k is set to 2. In the absorption operation GCS finds two 

closest clusters and merges those into one cluster. The clusters that has minimum seed 

to seed distance is considered as the closest one.   

Step 6- Health Check Operation:  GCS applies the proposed health check operation 

after I generations. In this study we use I = 20. GCS prepares a set of chromosomes S, 

where it stores the best chromosomes of each generation for the first I generations. It 

then calculates the average fitness 𝐹𝑑 of the chromosomes in S. If the fitness of a 

chromosome in the current population is less than 𝐹𝑑, the chromosome is selected as 

sick. GCS then probabilistically selects a chromosome from S to replace the sick 

chromosome. 

Step 7-Elitist Operation: Generally GA [2-5] applis the the elitist operation at the end 

of each generation. However, GCS applies the elitist operation at the end of each 

genetic operations within a generation. If the fitness of the worst chromosome 𝑃𝑤
𝑖  of the 

i-th population (i.e. the current population) is less than the fitness of the best 

chromosome 𝑃𝑏
𝐴𝑙𝑙 (from all previous generation) then 𝑃𝑤

𝑖  is replaced with 𝑃𝑏
𝐴𝑙𝑙 . 

Moreover, if the fitness of the best chromosome 𝑃𝑏
𝑖  of the i-th population has the higher 

fitness than 𝑃𝑏
𝐴𝑙𝑙 then 𝑃𝑏

𝐴𝑙𝑙 is replaced by 𝑃𝑏
𝑖 . 

GCS continues step 3 to step 7 for the total number (user defined) of iterations. At 

the end of all iterations GCS selects  𝑃𝑏
𝐴𝑙𝑙  as the best chromosome. The genes of the 

best chromosome represent the cluster centers and records are allocated to their closest 

seeds to form the final clusters.  

3. Experimental Results and Discussion 

We empirically compare the performance of our technique with five existing techniques 

called AGCUK [2], GAGR [3], GenClust [4], K-Means [7] and K-means ++ [8] on 15 

natural datasets (shown in Table 1) that are available in the UCI machine learning 

repository [9]. The existing techniques are shown in the literature [2-4] are recent, of 

high quality and to be better than many other techniques. For the experimentation of 

AGCUK, GAGR, GenClust and GCS we consider the population size to be 20. The 

number of generations/iterations for all techniques set to be 50 for a fair comparison. 

The cluster number in GGAR and AGCUK are generated randomly in a range 2 to √𝑁 

(N is the number of records in a data set). We run each technique 20 times on each dataset 

and we take the average result. Two evaluation criteria: Silhouette Coefficient and DB 

Index are used. The higher value of Silhouette Coefficient represents the better clustering 

result and the lower value of DB index indicate the better clustering result. 
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Fig. 1, Fig. 2, Fig. 3, and Fig. 4 shows 

that GCS performs better than all other 

techniques in all 15 datasets based on 

Silhouette Coefficient and DB Index. 

Moreover, in 14 out of 15 datasets the 

standard deviation of GCS do not overlap 

the standard deviation of GenClust based on 

Silhouette Coefficient. The standard 

deviation of GCS do not overlap the 

standard deviation of AGCUK in 12 out 15 

datasets based on Silhouette Coefficient. 

Note that the cases where the standard 

deviation of GCS overlap with the standard 

deviations of other techniques are indicated 

with an arrow. 

Dataset Records 

Glass Identification (GI) 214 

Vertebral Column (VC) 310 

Ecoli (EC) 336 

Leaf (LF) 340 

Liver Disorder (LD) 345 

Dermatology (DT) 366 

Blood Transfusion (BT) 748 

Pima Indian Diabetes (PID) 768 

Statlog Vehicle Silhouettes (SV) 846 

Bank Note Authentication  (BN) 1372 

Yeast (YT) 1484 

Image Segmentation (IS) 2310 

Wine Quality (WQ) 4898 

Page Blocks Classification (PBC) 5473 

MAGIC Gamma Telescope (MGT) 19020 

Table 1: Dataset at a glance 

 

 
Fig. 1: Silhouette Coefficient of the techniques on eight datasets 

 
Fig. 2: Silhouette Coefficient of the techniques on seven datasets 

 
Fig. 3: DB Index of the techniques on eight datasets 
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Fig. 4: DB Index of the techniques on seven datasets 

 

The right most column in Fig. 2 and Fig.4 show the average Silhouette Coefficient 

and DB Index of all techniques on all datasets. GCS achieves clearly better results on 

an average than all other techniques without any overlapping of the standard deviations. 

We believe that this is a very strong result in order to demonstrate the superiority of the 

proposed technique over a number of recent and high quality clustering techniques. 

Conclusion 

GCS uses proposed crossover and selection approaches in order to increase the quality 

of chromosomes in a population. It also ensures gradual health improvement of the 

chromosomes through the proposed health check operation. The experimental results 

based on two commonly used cluster evaluation criteria clearly indicate superiority of 

the proposed technique over five existing techniques. Our future research plan includes 

the proposal of new and effective genetic operations in order to achieve better clustering 

results. 
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