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Abstract. This paper presents bag-of-steps, a new methodology to
predict the rehabilitation length of a patient by monitoring the weight
he is bearing in his injured leg and using a predictive model based on the
bag-of-words technique. A force sensor is used to monitor and characterize
the patient’s gait, obtaining a set of step descriptors. These are later used
to define a vocabulary of steps that can be used to describe rehabilitation
sessions. Sessions are finally fed to a support vector machine classifier that
performs the final rehabilitation estimation.

1 Introduction

Hip and lower-limb fractures are some of the most common lesions amongst the
elderly population. This kind of injuries produces a high morbidity and mortal-
ity [1] due to both the direct impact of the injury and the often fragile health
status of elder patients. In addition, many patients with lower-limb fractures
become highly dependent, meaning that they need to be constantly assisted by
care providers or need to move into residential care institutions. Therefore, when
patients are not able to recover their pre-injury degree of mobility, they expe-
rience a loss of autonomy. Moreover, this situation causes an increase of costs
for the health care systems [2]. Given the current aging of the population, tack-
ling the issues regarding mobility reduction due to hip and lower-limb lesions
becomes a key factor for improving the autonomy and quality of life of patients
while reducing the associated costs of the after-surgery processes.

Currently, there is no general standard for mobilization after hip and lower-
limb fractures. Nevertheless, an important aspect during the mobility recovery
process is the proper weight load on the affected lower extremity. This procedure
needs to be guided by a therapist as an inappropriate weight load might harm the
patient. Therefore, qualitative monitoring of the patient’s weight distribution
is useful to assist therapists and patients during the rehabilitation period. Such
monitoring also offers the opportunity to assess the data in order to analyze

∗The work described in this paper was carried out as part of the MoSHCA project funded
by the spanish INNPACTO program and the European ERDF funds (Ref. EUREKA ITEA 2
no 11027 - IPT-2012-0943-300000 / Ref. DPI2013-47450-C2-1-R). Evalan has had no influence
on the interpretation of data and the final conclusions drawn. The Sensistep device is available
for the European market (www.sensistep.com)
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the recovery of the lesion; in this sense, recent studies show that there exists a
correlation between the weight loading pattern of the patient and the speed of
rehabilitation [3]. Thus, we expect that the use of machine learning techniques
can allow the prediction of the rehabilitation length of a patient; On the one
hand, this information will allow therapists to know if a patient is recovering
as expected or if the therapy is being effective. On the other hand, having
an estimation of patients’ rehabilitation length will allow hospitals and health
institutions to optimize and adapt the hospital resources and agenda according
to the patients’ needs.

In this work we present a methodology to estimate the rehabilitation length
of elderly patients who suffered an injury or surgery in a lower limb. Our ap-
proach proposes to use a force sensor (Sensistep [4]) to gather data of the patients
activity’ and to analyze it using Bag-of-Steps, a new reasoning method based on
the bag-of-words pipeline [5]. The sensor registers the force that a patient is ex-
erting on his leg during therapy; following, the gathered information is analyzed
using a reasoning engine that, following a bag-of-words pipeline, estimates if the
patient is evolving in a proper way and how much time he will need to recover
his mobility. The proposed methodology is tested using real data.

2 Related Work

Despite the problem proposed in this paper still has not been addressed by the
research community, gait analysis has been the focus of different studies during
recent years . The analysis of the human gait cycle has proven to be a valuable
tool for dealing with problems related with the aging of the population such as
the treatment of Parkinson [6] or risk of falling evaluation [7]; these works mostly
focus on analyzing how the gait cycle is related with the evolution of the diseases
and how the gait needs to be represented. In our work we use artificial intelli-
gence techniques to analyze such descriptors in order to help therapists during
the rehabilitation process. Similar approaches have proven to be successful for
aiding in the treatment of chronic diseases [8] and in veterinary applications [9].

The bag of words methodology is well known for its usefulness in text and
document classification. In it, each piece of text is represented as a set of words
belonging to a vocabulary; then, each text is classified using the appearance
frequency of each word. This methodology has been broadly adopted in the
computer-vision field, where it is mainly used for object and scene recognition [5,
10], but it has also been explored in other domains such as bioinformatics [11] or
sound recognition [12]. In this work we inspire in such previous research and we
apply this methodology for gait recognition and rehabilitation length prediction.

3 Bag-of-Steps

Our approach is based on the bag-of-words methodology [5] used in the text
recognition and computer vision domains: identify and describe the features
that describe a rehabilitation session (the steps); group steps that share similar

260

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



Fig. 1: Left: Methodology overview. Right: Step characterization features: a) Stride b) Heel
stance time c) Gait peak d) Impulse e) Loading response f) Peak instant.

characteristics into step stereotypes or words in order to create a vocabulary;
and, finally, build a classifier relating the stereotypes appearing in a particular
rehabilitation session and the rehabilitation length of the patient.

Data gathering is performed using the SensiStep technology developed
by Evalan. The system consists of an axial force sensor that is placed inside a
special sandal. The sensor registers how much axial force is exerted on the leg [3].
This provides information about the intensity of movement and the amount of
weight borne on the leg. The sensor continuously streams the recorded data
to a special feedback module. This module compares the actual weight loading
with the instructions set by the therapist in order to guide the patient during
his exercies.

Once the rehabilitation session finishes, the signal recorded by the sensor is
smoothed using a Gaussian filter. Then, steps are segmented according to the
two following criteria provided by therapists: in a step the patient’s leg bears
more than a 10% of its weight between 0.2 and 2 seconds; a step has a loading
peak of at least the 20% of the patient’s weight. Finally, the segmented steps
are described using six characteristic features of gait analysis [3]: stride, heel-
stance time, impulse, loading response, peak and peak instant (see Figure 1).
Once a patient finishes his rehabilitation session, the session is represented as a
collection of steps with different features.

The next step to follow is the generation of the vocabulary. In text
and document classification, the vocabulary or the bag-of-words methodology is
created by identifying the most repeated and significant words that appear in
the training documents. In the problem we are dealing with, each rehabilitation
session is composed by several records of steps; thus each step recorded could
be considered a word. Nevertheless, contrary to the text analysis domain, it is
unlikely to find two steps with the exact same feature descriptors. Therefore,
we propose to construct the vocabulary of the bag-of-steps in a similar way that
is done in computer vision.

The vocabulary of the bag-of-steps can be constructed by clustering all the
steps available in the training data and using each cluster centroid as the code-
word. Thus, each centroid represents a step stereotype and we can say that the
bag-of-steps vocabulary is composed by step stereotypes. The selection of the
clustering algorithm and its parameters can have an important influence in the
solution of the problem. Given that the step stereotypes will act as histogram
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bins, an inappropriate number of stereotypes can harm the efficiency of the bag-
of-steps. A too small number of clusters will result in a low discriminative power
whilst too many clusters would result in noise introduction and overtraining. To
avoid such issues, we propose to use clustering algorithms where the number of
clusters to be found (K) is determined by the user (e.g. K-means or K-medoids),
and to define the K value in concordance with the size of the training data (n)
by means of the thumb rule (

√
n/2) or the Rice’s rule (2n1/3).

Once the vocabulary is defined, each step in the training data is labeled
with a particular step stereotype. Therefore, each rehabilitation session can be
described as a step stereotype histogram of K bins.

Next, a predictive model should be trained in order to distinguish between
patients with different rehabilitation patterns. Literature offers a great number
of classifiers to tackle this stage of the bag-of-words methodology: artificial
neural networks, support vector machines, decision trees and forests, etc [11].
In this paper we study the use of 2 different classifiers, nearest neighbour (NN)
and support vector machines (SVM), but it is important to note that bag-of-
steps can be implemented with other classifiers. The NN classifier, one of the
simplest classifiers available, will be useful to establish a baseline for the bag-
of-steps performance. On the other hand, we opt for support vector machines
(SVM) [7] as they offer high generalization performance without the need of a
priori knowledge and regardless of the dimensionality of the inputs (which will
be conditioned by the number of clusters used in the previous step).

Once a patient performs a new rehabilitation session, its data will be an-
alyzed in order to estimate its rehabilitation length. The steps to follow are
similar to the ones used in the training phase (described above): to identify and
characterize the steps of the rehabilitation session; use the created vocabulary
to generate the histogram of stereotypes defining the rehabilitation session; and,
finally, to use the predictive model to predict the rehabilitation length of the
patient.

4 Experimentation

The methodology presented in this paper has been tested using data containing
information of patients who underwent surgery after a lower-limb fracture. The
data is composed of 48 different rehabilitation sessions with different rehabilita-
tion lengths (the time period between his surgery and his official discharge date).
On average, each rehabilitation session was composed of 1200 steps. For the ex-
periments, the data was distinguished between sessions belonging to a patient
with a long (more than 56 days) or a short (56 days or less) rehabilitation period.
The threshold between the two classes was defined according to the therapists’
expertize. The number of rehabilitation sessions corresponding to each class was
balanced (24 long and 24 short).

Experiments have been performed following a 10 fold cross validation method-
ology. We have built the vocabulary for the tests using K-medoids; to evaluate
the influence of the vocabulary size the experiment has been performed with
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Total Rehabilitation Length: 10-fold Cross Validation
K 20 50 81 129 150 200
Mean accuracy (SVM) 63.08% 80.00% 87.69% 81.53% 80.00% 72.30%
Standard dev. (SVM) 3.94% 5.01% 4.07% 3.78% 3.71% 3.36%
Mean accuracy (NN) 56.92% 77.31% 67.69% 70.77% 69.23% 58.46%
Standard dev. (NN) 3.56% 4.84% 3.14% 3.28% 3.21% 2.71%

Table 1: Accuracy when predicting the total rehabilitation length of a patient when using
different classifiers (cls) and different vocabulary sizes (K)

different K parameters (20, 50, 811, 1292, 150, 200). In the experiments we
have implemented bag-of-steps using a SVM with a quadratic kernel function
and using NN.

The bag-of-steps methodology presented satisfactory results (Table 1), ob-
taining an accuracy higher than the 80% in the best configurations (using SVM).
Nevertheless, the data shows that the size of the vocabulary and the classifier
used to build the predictive model have a significant influence on the method
performance. If we focus on the classifiers performance, as expected, SVM out-
performs NN with all the tested configurations. It is remarkable that with all the
SVM configurations but K = 20 and K = 200, the accuracy of steps is above the
80%; being 87.69% the best result when using a K value of 81. The best configu-
ration for the NN classifier (K = 50) obtains an accuracy of 77.31%, a quite high
value for a classifier that can be considered as the bag-of-steps baseline; when
comparing this result with the SVM it can be seen that this only improves the
results of the worst SVM configurations. A Wilcoxon T test (α = 0.05) confirms
that bag-of-steps obtains better results when using SVM than when using NN
under any configuration but with K = 50 and K = 20, in which they obtain
similar results.

When analyzing the influence of the K parameter, the results point that a
too small or a too high K value can decrease the performance of bag-of-steps as
the worst results for each classifier have been obtained when using K = 20 and
K = 200. On the case of NN classifier the best results are obtained with K = 50
a whilst when using SVM the best results are when using a K value obtained
from the thumbs and the Rice’s rule. This fact suggests that the K value should
be carefully tuned according to the classifier used in bag-of-steps and that the
thumb and the Rice’s rule can be useful but are not a silver bullet.

5 Conclusions

This paper presented bag-of-steps, a methodology for predicting the rehabilita-
tion length and the discharge date of patients who suffered a limb-related surgery
and are being rehabilitated. The methodology, uses force sensors which gathers
the weight load of the leg of the patient during a rehabilitation session. The
recorded data is then analyzed in order to detect the gait of the patient. The

1Number of clusters suggested by the Rice’s rule.
2Number of clusters suggested by the thumb rule.
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gait is then characterized using step descriptors that are compared with other
step stereotypes to finally build a step histogram for the rehabilitation session.
Using a classifier (SVM or k-NN), the histogram is then used to estimate the
rehabilitation length of the patient.

The methodology has been tested using data from real patients. Prelimi-
nary experimentation has shown that bag-of-steps can estimate the rehabilitation
length with an accuracy higher than the 80%. Nevertheless, further experimen-
tation should be carried out in order to determine if the method can also perform
more complex predictions such as regressions. To this end, further works include
collecting information from more patients as it is expected that by including new
patients into the model, the predictive power of the methodology will also in-
crease. In addition, testing alternative clustering and classification techniques
would also be an interesting work to study the flexibility of the methodology.
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