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Abstract. Using simpler building blocks to initially construct a deep
network, with their finetuning for the full architecture, is known to improve
the deep learning process. However, in many cases the pretrained networks
are obtained using different training algorithms than used in their final
combination. Here we introduce and compare four possible architectures
to pretrain a deep, feedforward network architecture, using exactly the
same formulation throughout. Based on the analytical formulations and
experimental results, one of the tested configurations is concluded as the
recommended approach for the initial phase of deep learning.

1 Introduction

The feedforward neural network (aka MultiLayered Perceptron, MLP) provides
a natural transformation architecture for nonlinear dimension reduction referred
as autoencoding. The general approach for a given data {x;}Y, is conceptually
very simple: use X;’s both as input and as the desired output in learning and
squeeze the vectors in the layered transformation using a small hidden, cen-
tral layer. Such an approach has, though, a known challenge related to local
search/optimization: are we finding ”good” solutions [1].

A lot of deep network work focuses on probabilistic networks like Deep Be-
lief Networks or Reduced/Deep Bolzmann Machines, with binary representation.
Especially the archetypical approach in [1] uses Restricted Boltzmann Machine
(RBM) to determine a set of pretrained two-layered networks, which are then
fine-tuned by optimizing all the weights of the cascadic structure. As empha-
sized in [2], such an approach can be referred as the breakthrough to effective
training strategies for deep architectures. Based on a comparison of different
blockwise construction techniques for deep networks in [3], it is concluded (p.
7): “greedy layer-wise procedure essentially helps to better optimize the deep
networks, probably by initializing the hidden layers so that they represent more
meaningful representations of the input, which also yields to better generaliza-
tion.” Thorough review on deep learning, along with the known difficulties,
is also provided in [4]. More recently, another review with a proper attempt
to track the historical development behind the various techniques involved, is
provided in [5].

The main reason why a deep network might be difficult to train as a whole,
especially when starting from a randomly initialized weights, is known as the
vanishing gradient problem (see [5], Section 5.9 and references therein). Actu-
ally one can see from the explicit, analytic formulae (see Section 2) that when
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any derivative of a hidden activation function (esp. on the saturation regions
on the tails) becomes small, then all the weight-derivatives of such component’s
consequents in backpropagation also vanish. Also vanishing gradients can be
attempted to be circumvented by first constructing more shallow, partial trans-
formations which are fully optimized afterwards. From the optimization point
of view, pretraining finds a better starting point in the whole search space for
the actual determination of all the weights with a local optimization approach
for finetuning.

Feedforward network with one hidden layer is structurally very similar to
the Reduced Bolzmann Machine and the LSE gradient is said to approximate
the RBM’s probabilistic log-likelihood gradient [6]. Especially both approaches
can be used for the pretraining of a deep network. Again along the lines of
[1], such one-hidden-layer networks are typically used to both pretrain and to
determine the sizes of the partial configurations which are cascaded as the hid-
den layers in the actual deep architecture. Our purpose here is to derive and
test slightly deeper structures than one-hidden-layer that could be suitable for
pretraining and which would precisely coincide with the corresponding layers
in the deep network. Furthermore, according to the results in [7], training a
deep neural network using better optimization solvers compared to the steep-
est descent based BP (or stochastic gradient descent, i.e., on-line BP) improves
the obtained performance. Therefore, we also apply here available advanced
nonlinear optimizer to determine the weights instead of any BP variant with
hand-tuned metaparameters (e.g., learning rate). The downside without an ap-
plication of parallel or distributed computing model is restriction to small data
sets. However, the characteristics of the compared configurations can still be
revealed.

The contents of the article are as follows: after this introduction, we provide
the basic formulae for the kind of networks in Section 2. Then, in Section 3,
the comparison framework and results of the comparison are given. Finally, the
overall conclusions are drawn in Section 4.

2 Derivation of autoencoders

Next we briefly derive and describe the basic forms of deep networks to be
compared below, using the formalism introduced in [8]. Hence, let f(-) denote the
activation function which, for a layer of size m, compose the so-called diagonal
function-matric F = F(-) = Diag{fi(-)}™, where f; = f. Then the output of
a feedforward network with L layers and linear activation on the final layer, for
an input vector x, reads as

o=ol =N(x)=WEoEY), (1)

where 0 = x and o/ = F(Wlol=D)forl = 1,...,L — 1. We assume in
what follows that L is even. When none of the layers contain the so-called
bias nodes, then the dimensions of the weight-matrices are given by dim(W') =
ny Xng_1, I =1,..., L, where ng is the length of the learning data vectors {x;},
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nr = ng in the autoencoding context, and n;,0 < [ < L, determine the sizes
(number of neurons) of the hidden layers with ny,/, < ng.

In order to determine the weights of the autoencoder, we minimize the least-
squares error cost function

N
1 _
TUWL) = 55 D IWhel ™V — x| (2)
=1

Then (see [8]) the gradient-matrices Vw1 J({W'},), I = L,..., 1, for (2) are
of the form

N
1 .
Vw T(W ) = 5 3 d, ol =),
where
aF = e, =Whol* ™V _y, (3)

d; = Diag{(F) (W'o[ )} W)™, (4)

As proposed in the introduction, our purpose here is to restrict ourselves
to four- and six-layered networks satisfying (2)—(4). In addition, once more
following [1], we also consider the corresponding self-adjoint autoencoders where
we formally restrict into WE=* = (W*+I)T for k = 0,...L/2 — 1. Hence,
this refers to an autoencoder where the decoder is an algebraich adjoint (kind of
transpose because of the diagonal function matrix convention) of the encoder.
Using similar derivation as in [8] it follows that, for the four-layered autoencoder
(WHT F(W?)T F(W2F(Wx))), the gradient matrices Vyw: J,1 = 1,2, for (2)
are of the form

1 N N

Vw2J = N Z [d} (o))" +0(d})"], VwiJT = %Z [dix] +oje]].
i=1 i=1

Hence, the derivative matrix V. J for the self-adjoint autoencoder simply reads
as Vwi I + [Vwe-a-nJ }T7 which is used in the symmetric, six-layered network.
To this end, we observe from Vw1 J and Vw27 that the self-adjoint struc-
ture incorporate more information inside the derivative matrix making its zero-
condition at a local optimum more involved. This indicates that the self-adjoint
autoencoders might be more tolerant against the vanishing gradient problem
compared to the fully decoupled structure.

3 Experimental results

In the experiments, we compare the full and symmetric, four- and six-layered
autoencoders. The comparison is based on a set of small datasets, obtained
from the UCI repository, as described in Table 1. All variables are preprocessed
using the min-max scaling into [—1,1] with tanh as the activation function for
the feedforward network (see [8]). Moderate sizes of N are due to restricting the
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computational burden, resulting from using the full-fledged nonlinear optimizer
fminunc from Octave to minimize (2). For exploration, local search with random
generation of the initial weights from U([—1, 1]) is repeated five times with the
smallest error selected as the actual result. We also restrict ourselves to small ny,
because the tested configurations are further restricted in such a way that the
squeezing always provides two-dimensional encoding, i.e., no = 2 for 4-layered
(4L) and n3 = 2 for 6-layered (6L) autoencoder. In this way, we can compare
the obtained accuracy to the corresponding result of the linear (least-squares)
autoencoder provided by the classical PCA with the two principal components.

The comparison is focused on the autoencoding accuracy assuming the same
number of unknown weights in the four configurations tested. As the error
measure we apply (see [9])

N no
1
e = - Z Z(/\[(x,) —x;)7  (Mean-Root-Squared-Error).

i=1 \ j=1

Furthermore, we restrict ng = nq in 4L and ns = ny & ng = ns in 6L. Then the
number of weights in 4L or 6L autoencoders is fully determined by the size of
the hidden layer(s) between input/output and the central layers, which is then
varied.

Results of the comparison are given in Table 1. For each dataset, we first
make a pairwise comparison of two different methods as follows: for coarser
grid of the number of unknowns n, for the eygr’s which are under the level of
the PCA error, the number of better results (smaller error) are counted. Then,
the method which has larger number of smaller errors is ranked better than
the method compared with. In this way, we rank all methods for all datasets.
This ranked-based evaluation is finally summarized by simply counting together
all the individual rankings to create the final preferences (see [10] for a similar
evaluation protocol).

Visualization of errors for the four configurations with four datasets are given

Dataset N no: Type of variables ‘ 4-Full 4-Sym  6-Full 6-Sym ‘

Abalone 4178 8: 1 nominal, 7 real 4 3 2 1
Cloud 1024 10: real 4 3 2 1
Glass 214 9: real 3 4 1 2
Haberman 306 3: int 4 3 2 1
Iris 150 4: real 4 2 3 1
Seeds 210 4: real 3 4 1 2
Teaching . . .
Ass. Eval. 151 5: 2 bin, 2 categ, int 2 4 1 3
24 23 12 11
All
(4.) (3.) (2.) (1.)

Table 1: Datasets and method rankings in the experiments.
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Fig. 1: Autoencoding errors graphs

in Figure 1. For ‘Iris’ (bottom right) the largest structure, full 6L, is prolonged
wrt ns to illustrate the increase of the error for larger number of unknowns.

4 Conclusions

The essence of the comparison here was to consider the quality of different feed-
forward networks for the same number of unknowns to be optimized when solv-
ing (2). Based on the computational experiments, cf. Table 1 and Figure 1,
we obtained clear separation between the different types of architectures. The
deeper models with six layers were clearly better than the four-layered ones. This
supports the Betti number based analysis of the representation capability as pro-
posed in [11], where it was shown that deep networks are able to realize functions
with higher complexity compared to the shallow ones. Actually, as can be seen
from the placement points in the pairwise rankings, the two groups of layers, 4L
and 6L, were very close to each other in the overall assessment. One tightening
element, a slight outlier in the results, was the ranking with “Teacher Assistant
Evaluation, TAE” dataset, where the full networks showed better performance
compared to the algebraich adjoint ones. But, for this particular dataset, the
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variables were the most discrete ones in the comparison. To this end, even if
very close to each other, both the rank summary and the better avoidance of the
vanishing gradient problem, i.e. the inherent difficulty of optimizing the deep
weights, with noting the special character of TAE, allow us to conclude that the
six-layered symmetric autoencoder is the recommended approach for pretraining
a deep, feedforward network. This recommendation is supported by noting the
increased error trends in Figures la and 1d for all the other techniques. In our
future work, we try to improve the efficiency of the training algorithms to tackle
larger datasets, because the solution of the nonlinear optimization problem with
sufficient accuracy is computationally challenging even for the size of problems
as considered here.
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