
Comparison of Four- and Six-Layered
Configurations for Deep Network Pretraining

Jan Hänninen and Tommi Kärkkäinen

Department of Mathematical Information Technology
P.O. Box 35, 40014 University of Jyväskylä - Finland

Abstract. Using simpler building blocks to initially construct a deep
network, with their finetuning for the full architecture, is known to improve
the deep learning process. However, in many cases the pretrained networks
are obtained using different training algorithms than used in their final
combination. Here we introduce and compare four possible architectures
to pretrain a deep, feedforward network architecture, using exactly the
same formulation throughout. Based on the analytical formulations and
experimental results, one of the tested configurations is concluded as the
recommended approach for the initial phase of deep learning.

1 Introduction

The feedforward neural network (aka MultiLayered Perceptron, MLP) provides
a natural transformation architecture for nonlinear dimension reduction referred
as autoencoding. The general approach for a given data {xi}Ni=1 is conceptually
very simple: use xi’s both as input and as the desired output in learning and
squeeze the vectors in the layered transformation using a small hidden, cen-
tral layer. Such an approach has, though, a known challenge related to local
search/optimization: are we finding ”good” solutions [1].

A lot of deep network work focuses on probabilistic networks like Deep Be-
lief Networks or Reduced/Deep Bolzmann Machines, with binary representation.
Especially the archetypical approach in [1] uses Restricted Boltzmann Machine
(RBM) to determine a set of pretrained two-layered networks, which are then
fine-tuned by optimizing all the weights of the cascadic structure. As empha-
sized in [2], such an approach can be referred as the breakthrough to effective
training strategies for deep architectures. Based on a comparison of different
blockwise construction techniques for deep networks in [3], it is concluded (p.
7): “greedy layer-wise procedure essentially helps to better optimize the deep
networks, probably by initializing the hidden layers so that they represent more
meaningful representations of the input, which also yields to better generaliza-
tion.” Thorough review on deep learning, along with the known difficulties,
is also provided in [4]. More recently, another review with a proper attempt
to track the historical development behind the various techniques involved, is
provided in [5].

The main reason why a deep network might be difficult to train as a whole,
especially when starting from a randomly initialized weights, is known as the
vanishing gradient problem (see [5], Section 5.9 and references therein). Actu-
ally one can see from the explicit, analytic formulae (see Section 2) that when

533

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

any derivative of a hidden activation function (esp. on the saturation regions
on the tails) becomes small, then all the weight-derivatives of such component’s
consequents in backpropagation also vanish. Also vanishing gradients can be
attempted to be circumvented by first constructing more shallow, partial trans-
formations which are fully optimized afterwards. From the optimization point
of view, pretraining finds a better starting point in the whole search space for
the actual determination of all the weights with a local optimization approach
for finetuning.

Feedforward network with one hidden layer is structurally very similar to
the Reduced Bolzmann Machine and the LSE gradient is said to approximate
the RBM’s probabilistic log-likelihood gradient [6]. Especially both approaches
can be used for the pretraining of a deep network. Again along the lines of
[1], such one-hidden-layer networks are typically used to both pretrain and to
determine the sizes of the partial configurations which are cascaded as the hid-
den layers in the actual deep architecture. Our purpose here is to derive and
test slightly deeper structures than one-hidden-layer that could be suitable for
pretraining and which would precisely coincide with the corresponding layers
in the deep network. Furthermore, according to the results in [7], training a
deep neural network using better optimization solvers compared to the steep-
est descent based BP (or stochastic gradient descent, i.e., on-line BP) improves
the obtained performance. Therefore, we also apply here available advanced
nonlinear optimizer to determine the weights instead of any BP variant with
hand-tuned metaparameters (e.g., learning rate). The downside without an ap-
plication of parallel or distributed computing model is restriction to small data
sets. However, the characteristics of the compared configurations can still be
revealed.

The contents of the article are as follows: after this introduction, we provide
the basic formulae for the kind of networks in Section 2. Then, in Section 3,
the comparison framework and results of the comparison are given. Finally, the
overall conclusions are drawn in Section 4.

2 Derivation of autoencoders

Next we briefly derive and describe the basic forms of deep networks to be
compared below, using the formalism introduced in [8]. Hence, let f(·) denote the
activation function which, for a layer of size m, compose the so-called diagonal
function-matrix F = F(·) = Diag{fi(·)}mi=1 where fi ≡ f . Then the output of
a feedforward network with L layers and linear activation on the final layer, for
an input vector x, reads as

o = oL = N (x) = WLo(L−1), (1)

where o0 = x and ol = F(Wlo(l−1)) for l = 1, . . . , L − 1. We assume in
what follows that L is even. When none of the layers contain the so-called
bias nodes, then the dimensions of the weight-matrices are given by dim(Wl) =
nl×nl−1, l = 1, . . . , L, where n0 is the length of the learning data vectors {xi},

534

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

nL = n0 in the autoencoding context, and nl, 0 < l < L, determine the sizes
(number of neurons) of the hidden layers with nL/2 < n0.

In order to determine the weights of the autoencoder, we minimize the least-
squares error cost function

J ({Wl}Ll=1) =
1

2N

N
∑

i=1

‖WLo
(L−1)
i − xi‖2. (2)

Then (see [8]) the gradient-matrices ∇WlJ ({Wl}Ll=1), l = L, . . . , 1, for (2) are
of the form

∇WlJ ({Wl}Ll=1) =
1

N

N
∑

i=1

dl
i [o

(l−1)
i]T ,

where

dL
i = ei = WLo

(L−1)
i − yi, (3)

dl
i = Diag{(F)′(Wl o

(l−1)
i)} (W(l+1))T d

(l+1)
i . (4)

As proposed in the introduction, our purpose here is to restrict ourselves
to four- and six-layered networks satisfying (2)–(4). In addition, once more
following [1], we also consider the corresponding self-adjoint autoencoders where
we formally restrict into WL−k = (W(k+1))T for k = 0, . . . L/2 − 1. Hence,
this refers to an autoencoder where the decoder is an algebraich adjoint (kind of
transpose because of the diagonal function matrix convention) of the encoder.
Using similar derivation as in [8] it follows that, for the four-layered autoencoder
(W1)TF((W2)TF(W2F(W1x))), the gradient matrices ∇WlJ , l = 1, 2, for (2)
are of the form

∇W2J =
1

N

N
∑

i=1

[

d2
i (o

1
i)

T + o2
i (d

3
i)

T
]

, ∇W1J =
1

N

N
∑

i=1

[

d1
ix

T
i + o3

i e
T
i

]

.

Hence, the derivative matrix∇WlJ for the self-adjoint autoencoder simply reads
as ∇WlJ +[∇WL−(l−1)J]T , which is used in the symmetric, six-layered network.
To this end, we observe from ∇W1J and ∇W2J that the self-adjoint struc-
ture incorporate more information inside the derivative matrix making its zero-
condition at a local optimum more involved. This indicates that the self-adjoint
autoencoders might be more tolerant against the vanishing gradient problem
compared to the fully decoupled structure.

3 Experimental results

In the experiments, we compare the full and symmetric, four- and six-layered
autoencoders. The comparison is based on a set of small datasets, obtained
from the UCI repository, as described in Table 1. All variables are preprocessed
using the min-max scaling into [−1, 1] with tanh as the activation function for
the feedforward network (see [8]). Moderate sizes of N are due to restricting the

535

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

computational burden, resulting from using the full-fledged nonlinear optimizer
fminunc from Octave to minimize (2). For exploration, local search with random
generation of the initial weights from U([−1, 1]) is repeated five times with the
smallest error selected as the actual result. We also restrict ourselves to small n0,
because the tested configurations are further restricted in such a way that the
squeezing always provides two-dimensional encoding, i.e., n2 = 2 for 4-layered
(4L) and n3 = 2 for 6-layered (6L) autoencoder. In this way, we can compare
the obtained accuracy to the corresponding result of the linear (least-squares)
autoencoder provided by the classical PCA with the two principal components.

The comparison is focused on the autoencoding accuracy assuming the same
number of unknown weights in the four configurations tested. As the error
measure we apply (see [9])

eMR =
1

N

N
∑

i=1

√

√

√

√

n0
∑

j=1

(N (xi)− xi)2j (Mean-Root-Squared-Error).

Furthermore, we restrict n3 = n1 in 4L and n5 = n1 & n4 = n2 in 6L. Then the
number of weights in 4L or 6L autoencoders is fully determined by the size of
the hidden layer(s) between input/output and the central layers, which is then
varied.

Results of the comparison are given in Table 1. For each dataset, we first
make a pairwise comparison of two different methods as follows: for coarser
grid of the number of unknowns n, for the eMR’s which are under the level of
the PCA error, the number of better results (smaller error) are counted. Then,
the method which has larger number of smaller errors is ranked better than
the method compared with. In this way, we rank all methods for all datasets.
This ranked-based evaluation is finally summarized by simply counting together
all the individual rankings to create the final preferences (see [10] for a similar
evaluation protocol).

Visualization of errors for the four configurations with four datasets are given

Dataset N n0: Type of variables 4-Full 4-Sym 6-Full 6-Sym

Abalone 4178 8: 1 nominal, 7 real 4 3 2 1
Cloud 1024 10: real 4 3 2 1
Glass 214 9: real 3 4 1 2
Haberman 306 3: int 4 3 2 1
Iris 150 4: real 4 2 3 1
Seeds 210 4: real 3 4 1 2
Teaching
Ass. Eval.

151 5: 2 bin, 2 categ, int 2 4 1 3

All
24
(4.)

23
(3.)

12
(2.)

11
(1.)

Table 1: Datasets and method rankings in the experiments.

536

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

0 100 200 300 400 500 600 700 800
0.1

0.15

0.2

0.25

0.3

0.35

n

M
R

S
E

PCA err
4L−Full
4L−Sym
6L−Full
6L−Sym

(a) Autoencoding errors for Abalone

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

M
R

S
E

PCA err
4L−Full
4L−Sym
6L−Full
6L−Sym

(b) Autoencoding errors for Cloud

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

M
R

S
E

PCA err
4L−Full
4L−Sym
6L−Full
6L−Sym

(c) Autoencoding errors for TAE

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

n

M
R

S
E

PCA err
4L−Full
4L−Sym
6L−Full
6L−Sym

(d) Autoencoding errors for Iris

Fig. 1: Autoencoding errors graphs

in Figure 1. For ‘Iris’ (bottom right) the largest structure, full 6L, is prolonged
wrt ns to illustrate the increase of the error for larger number of unknowns.

4 Conclusions

The essence of the comparison here was to consider the quality of different feed-
forward networks for the same number of unknowns to be optimized when solv-
ing (2). Based on the computational experiments, cf. Table 1 and Figure 1,
we obtained clear separation between the different types of architectures. The
deeper models with six layers were clearly better than the four-layered ones. This
supports the Betti number based analysis of the representation capability as pro-
posed in [11], where it was shown that deep networks are able to realize functions
with higher complexity compared to the shallow ones. Actually, as can be seen
from the placement points in the pairwise rankings, the two groups of layers, 4L
and 6L, were very close to each other in the overall assessment. One tightening
element, a slight outlier in the results, was the ranking with “Teacher Assistant
Evaluation, TAE” dataset, where the full networks showed better performance
compared to the algebraich adjoint ones. But, for this particular dataset, the

537

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

variables were the most discrete ones in the comparison. To this end, even if
very close to each other, both the rank summary and the better avoidance of the
vanishing gradient problem, i.e. the inherent difficulty of optimizing the deep
weights, with noting the special character of TAE, allow us to conclude that the
six-layered symmetric autoencoder is the recommended approach for pretraining
a deep, feedforward network. This recommendation is supported by noting the
increased error trends in Figures 1a and 1d for all the other techniques. In our
future work, we try to improve the efficiency of the training algorithms to tackle
larger datasets, because the solution of the nonlinear optimization problem with
sufficient accuracy is computationally challenging even for the size of problems
as considered here.

References

[1] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[2] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vin-
cent, and Samy Bengio. Why does unsupervised pre-training help deep learning? J.
Mach. Learn. Res., 11:625–660, 2010.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In B. Schölkopf, J.C. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19 (NIPS’06), pages 153–160. MIT Press,
2007.

[4] Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn., 2(1):1–
127, 2009.

[5] Jürgen Schmidhuber. Deep learning in neural networks: An overview. CoRR,
abs/1404.7828, 2014.

[6] Yoshua Bengio and Olivier Delalleau. Justifying and generalizing contrastive divergence.
Neural Computation, 21(6):1601–1621, 2009.

[7] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng. On optimiza-
tion methods for deep learning. In Proceedings of the 28th International Conference on
Machine Learning (ICML 2011), 2011. 8 pages.

[8] T. Kärkkäinen. MLP-network in a layer-wise form with applications to weight decay.
Neural Computation, 14(6):1451–1480, 2002.

[9] T. Kärkkäinen. On cross-validation for MLP model evaluation. In Structural, Syntactic,
and Statistical Pattern Recognition, Lecture Notes in Computer Science (8621), pages
291–300. Springer-Verlag, 2014.

[10] M. Saarela and T. Kärkkäinen. Analyzing student performance using sparse data of core
bachelor courses. Journal of Educational Data Mining, 7(1):3–32, 2015.

[11] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A com-
parison between shallow and deep architectures. IEEE Transactions on Neural Networks
and Learning Systems, 25(8):1553–1565, 2014.

538

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8.
Available from http://www.i6doc.com/en/.

	proceedings2016 front
	Wednesday-Thursday-Friday
	Wednesday
	ESANN2016-21_1
	ESANN2016-111_2
	ESANN2016-137_4
	Introduction
	Constraint learning framework
	Graph kernel
	Importance notion

	Inverse folding
	Constraints learning

	Experimental results and conclusions

	ESANN2016-150_7
	ESANN2016-172_2
	ESANN2016-32_4
	ESANN2016-109_3
	ESANN2016-115_5
	ESANN2016-169_4
	ESANN2016-131_2
	Introduction
	Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids
	ALP for Radiation Forecasting
	Conclusions

	ESANN2016-187_2
	ESANN2016-176_2
	ESANN2016-141_2
	ESANN2016-179_2
	ESANN2016-159_2
	ESANN2016-96_4
	ESANN2016-164_4
	ESANN2016-5_2
	ESANN2016-22_4
	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein space

	Indefinite proximity functions
	Learning models for indefinite proximities
	Conclusions

	ESANN2016-186_4
	ESANN2016-14_3
	ESANN2016-100_2
	ESANN2016-87_2
	ESANN2016-98_2
	ESANN2016-105_2
	ESANN2016-170_8
	ESANN2016-161_4
	ESANN2016-162_2
	ESANN2016-121_3
	Introduction
	Proposed Embedding Methods
	Experiment Tasks and Data
	Experiments
	Conclusion

	ESANN2016-79_3
	ESANN2016-154_3
	ESANN2016-62_2
	Introduction
	Full Bayesian Semi Non-negative Matrix Factorisation
	Gibbs sampling approach
	Marginal likelihood for model selection

	Empirical evaluation
	Conclusions

	ESANN2016-81_3
	ESANN2016-122_8
	ESANN2016-139_6
	ESANN2016-196_10
	Introduction
	Unified Object Detection and Semantic Segmentation
	Convolutional Features for Region Proposal and Object Detection
	Conditional Random Fields Labelling

	Experimental Results
	Object Detection
	Semantic Segmentation

	Conclusions

	Thursday
	ESANN2016-17_1
	ESANN2016-138_2
	ESANN2016-8_2
	ESANN2016-82_2
	ESANN2016-142_4
	ESANN2016-39_6
	ESANN2016-152_3
	ESANN2016-49_3
	ESANN2016-133_3
	ESANN2016-67_3
	ESANN2016-134_3
	ESANN2016-60_5
	ESANN2016-145_2
	ESANN2016-167_10
	ESANN2016-11_3
	ESANN2016-20_2
	ESANN2016-12_3
	ESANN2016-181_2
	The physics problem
	The AMS objective function
	Results of the challenge

	ESANN2016-171_2
	ESANN2016-47_6
	ESANN2016-7_3
	ESANN2016-19_2
	ESANN2016-71_3
	Introduction
	Algorithms
	Experiments
	Hyperparameter setting
	Measure of model complexity
	Results
	Restriction of the overall classifier complexity

	Conclusion

	ESANN2016-9_3
	ESANN2016-91_3
	Introduction
	Watch, Ask, Learn, and Improve
	Experimental Results and Discussion
	Conclusions and Future Work

	ESANN2016-97_3
	ESANN2016-160_3
	ESANN2016-144_4
	ESANN2016-116_2
	ESANN2016-53_9
	ESANN2016-104_4
	ESANN2016-174_3
	ESANN2016-99_2
	Introduction
	Related Work

	Hierarchical Bayesian Active Transfer Learning
	Experiments
	Synthetic Experiment
	Activity Recognition from Accelerometers

	Conclusions

	ESANN2016-46_4
	ESANN2016-48_2
	ESANN2016-63_3
	Introduction
	WiSARD in numeric and symbolic domain
	Related Works
	Performance Evaluation Through Statistical Analysis
	Concluding Remarks

	ESANN2016-102_4
	ESANN2016-113_7
	ESANN2016-120_6
	ESANN2016-126_5
	ESANN2016-136_3
	ESANN2016-158_4
	Introduction
	SVDD generalization
	Naive approach (iSVDD)
	Concentric SVDD models (cSVDD)
	Method comparison

	Score conversion into probabilities
	Calibration using sigmoid function (sig)
	Calibration using extreme value distributions (gev)

	Experiments
	Evaluation and parameter selection
	Experimental Results

	Conclusion

	Friday
	ESANN2016-23_1
	ESANN2016-175_2
	ESANN2016-112_4
	ESANN2016-118_8
	ESANN2016-74_3
	ESANN2016-6_3
	ESANN2016-27_2
	ESANN2016-45_3
	ESANN2016-103_2
	ESANN2016-107_3
	Introduction
	Related work

	The Chirp-Z Transform
	Transform of an Image Using the Chirp-Z Transform
	The Algorithm
	Experiments
	Conclusion

	ESANN2016-77_2
	ESANN2016-72_2
	ESANN2016-78_3
	ESANN2016-28_2
	ESANN2016-37_4
	ESANN2016-85_14
	ESANN2016-93_3
	ESANN2016-124_2
	ESANN2016-188_2
	ESANN2016-178_2
	ESANN2016-143_5
	ESANN2016-84_21
	ESANN2016-18_1
	ESANN2016-147_2
	Introduction
	Case study: European Social Survey (ESS)
	Existing model building workflow
	Key roles for interactive visualisation
	Incorporating Theory
	Exploring variables
	Interactively building models
	Considering Geography
	Recording the model-building process, i.e., provenance

	Enhancing the workflow
	VarXplorer prototype
	ModelBuilder prototype
	The Model Building Process
	A brief example of the modelling process

	Discussion, conclusion and further work

	ESANN2016-123_2
	ESANN2016-166_3
	ESANN2016-41_4
	ESANN2016-70_2
	ESANN2016-29_2
	ESANN2016-54_2
	ESANN2016-94_5
	ESANN2016-114_5
	ESANN2016-125_6
	ESANN2016-148_2
	ESANN2016-168_3
	ESANN2016-75_2

	proceedings2016 back

