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Abstract. We show how to train a quantum network of pairwise inter-
acting qubits such that its evolution implements a target quantum algo-
rithm into a given network subset. Our strategy is inspired by supervised
learning and is designed to help the physical construction of a quantum
computer which operates with minimal external classical control.

1 Quantum networks for computation

A quantum computer is a device which uses peculiar quantum effects, such as
superposition and entanglement, to process information [1]. Although current
quantum computers operate on few quantum bits (qubits) [2, 3], it is known that
large-scale quantum devices can run certain algorithms exponentially faster than
the classical or probabilistic counterpart [1].

Recently there has been many proposals to speed-up machine learning strate-
gies using quantum devices [4]. Most of these proposals either use quantum
algorithms to achieve faster learning [5] or exploit quantum fluctuations to es-
cape from local minima in training the Boltzmann machine [6]. In this paper
we consider a different perspective. Since the actual development of a general
quantum computer is still in its infancy, rather than focusing on the advantages
of quantum devices for machine learning we show how machine learning can help
the construction of a quantum computer.

To keep the discussion realistic, we focus on a superconducting quantum
computing architecture [7, 8] where each qubit is realized with a superconducting
circuit cooled at low temperature. The pairwise coupling between two qubits is
introduced by connecting them via a capacitor (or an inductor) whose strength
can be tuned by design. Given the flexibility in wiring the different qubits, it is
then possible to build a quantum network with tunable couplings.

In the next sections we introduce basic aspects of the physical simulation of
quantum operations to set up the formalism and then we propose our strategy
which is inspired by supervised learning.
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1.1 Physical implementation of quantum gates

From the mathematical point of view each qubit is described by a two dimen-
sional Hilbert space C

2, while the Hilbert space of N qubits is given the the

tensor product C2 ⊗C
2 · · · = C

2N ≡ HN . The possible quantum states, like the
state 00101 for a classical 5-bit register, correspond to vectors of unit norm in
the Hilbert space. An arbitrary operation, namely a quantum gate, corresponds
to a unitary matrix U acting on HN . In more physical terms, U is the solution of
the Schrödinger equation i∂U

∂t
= HU , where i is the imaginary unit, t represents

time, and H is the Hamiltonian, a Hermitian 2N×2N matrix which describes the
physical interactions between the qubits. If the qubits are unmodulated, namely
there is no external time-dependent control so H is independent on t, then after
a certain time t the operation on the qubits is given by U = e−itH , being e(·)

the matrix exponential. In principle, for any given operation U there are some
corresponding interactions modeled by a Hamiltonian H so that U = e−itH .
However, in physical implementations of quantum computers [2] the range of
possible Hamiltonians is severely limited, thus drastically restricting the range
of achievable quantum operations without external control. This problem is typ-
ically solved by switching on and off different interactions in time so the final
operation is the product U1U2 . . . where Un = e−itnHn , being Hn a sequence
of interaction Hamiltonians, each one switched on for a time tn. As in classical
computation, there is a minimal set of gates {Un} which enable universal quan-
tum computation simply by concatenating at different times gates from this set
[9]. Indeed, most quantum algorithms are nothing but a known sequence of
universal operations. The implementation of this sequence however requires an
outstanding experimental ability to perfectly switch on and off different physi-
cal couplings at given times. Possible errors or imperfections in this sequential
process accumulate in time and may affect the outcome, if not tacked with error
correcting codes [1].

Given this experimental difficulty, it is worth asking whether the unitary U
which results from a recurring sub-sequence of the algorithm can be implemented
directly in hardware. Indeed in the next section we propose a different strategy
which exploits auxiliary qubits to implement quantum operations with physical
interactions and no external control. This strategy could potentially allow an
experimentalist to create a quantum device which, by simply “waiting” for the
natural dynamics of the network, is able to implement transformations like the
Quantum Fourier Transform which are ubiquitous in quantum algorithms, and
may even provide an alternative paradigm for general quantum computation.
Our method shares similar goals with a recent proposal by Childs [10], but
it is completely different because it uses weighted networks which allow us to
significantly lower the number ancillary qubits required for the operation.
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1.2 Engineered unmodulated networks for computation

Our aim is to implement a quantum operation (a unitary1 matrix U) on a N
qubit register exploiting the physical interactions available for that hardware
architecture, and avoiding to use external control fields. Since a generic 2N ×2N

gate U is impossible to realize with N qubits and pairwise interactions only,
as described before, we consider a larger network of N ′ > N qubits and we
engineer the strength of the pairwise interactions between them to implement
the operation, when possible.

This problem shares some similarities with supervised learning in artificial
neural networks although, as we clarify in the following, is also very different
in some aspects. In supervised learning, given a training set {Ik, Ok}k=1,...,M

the goal is the find a functional approximation Ok = f(Ik) which is also able to
predict the output corresponding to unknown inputs missing from the training
set. Even when there is no prior knowledge of f , it is possible to approximate the
input/output relations with a neural network composed by input, output and
hidden layers [11]. The learning procedure then consists in finding the optimal
weights between nodes of different layers such that the desired input/output
relation is reconstructed.

Input / Output

     Register

Ancillary

 Qubits

Fig. 1: Example of a quantum network composed of register and ancillary qubits.
Each vertex is a qubit and each edge represents pairwise interactions. The target
operation U is implemented only on the register qubits.

On the other hand, in our problem the functional relation between inputs
and outputs, namely the gate U is already known in advance. However, the
corresponding Hamiltonian may contain simultaneous interactions between 3 or
more qubits which unlikely appear in physical implementations. To simulate U

1We consider a quantum gate, but our formalism can be easily extended to more general
quantum channels [1].
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using pairwise interactions only, we consider then a larger network as in Fig. 1
with ancillary qubits playing the role of the hidden layers, and we train the
weights, namely the physical couplings, such that the dynamics of the network
reproduces U in a given subset of qubits. To simplify the implementation we
assume that the input and output registers are made of the same physical qubits,
although this assumption may be removed. In the next section we show how to
formally model the training procedure.

2 Supervised gate “teaching”

In supervised learning the training set is composed of data, whose input to output
map f is not known. On the other hand, we know the gate U and we want find
find the physical couplings, i.e. the weights of the network in Fig. 1, such that
the quantum network evolution implements U in the register. Because of this
difference we named our strategy “teaching” rather than learning. In our case
we can build an arbitrary large training set by choosing random input states2

|ψj〉 ∈ HN and finding the corresponding output states HN ∋
∣

∣ψ′
j

〉

= U |ψj〉, so
the generated M -dimensional (M being variable) training set is

T = {(|ψj〉 , U |ψj〉) : j = 1, . . . ,M} . (1)

In principle the optimal inputs may depend on the target gate U . However, for
simplicity and generality, in (1) each |ψi〉 is sampled from the Haar measure [12].

The quality of the implementation of the target gate U into the dynamics
of the quantum network can be measured by defining a cost function which, for
any input state |ψj〉 ∈ T , measures the distance between the output state of the
evolution and the expected output U |ψj〉. The similarity between two quantum
states |ψ〉 and |φ〉 is measured by the fidelity3 |〈ψ|φ〉|2. Because of the Cauchy-
Schwarz inequality, it is 0 ≤ |〈ψ|φ〉|2 ≤ 1 and the upper value |〈ψ|φ〉| = 1 is
obtained only when |ψ〉 = |φ〉. However, because of entanglement between the
register and the ancillary qubits the state of the register is not exactly known,
but it can be in different states |φj〉 with probability pj . Such a mixed state is
mathematically described by the matrix [1] ρ =

∑

j pj |φj〉 〈φj | and the fidelity

between ρ and ψ becomes 〈ψ|ρ |ψ〉 ≡
∑

j pj|〈ψ|φj〉|
2.

Given an initial state |ψ〉 let us call Ew[ψ] the state of the register after the
evolution generated by the interaction Hamiltonian H(w) which depends on the
weights w. This state can be constructed by (i) initializing the N register qubits
in the state |ψ〉; (ii) setting the remaining N ′ −N ancillary qubits in a (fixed)
state |α〉; (iii) switching on the evolution described by H(w) for a certain time t –
without loss of generality we set t = 1, since e−itH(w) = e−iH(tw); (iv) observing
the state of the register4. The goal is then to find the optimal weights w (if

2In the “bra and ket” notation [1] |ψ〉 refers to a normalized vector.
3The “bra” 〈ψ| corresponds to the Hermitian conjugate |ψ〉† so 〈ψ|φ〉 is the inner product

between the vectors |ψ〉 and |φ〉.
4Formally, steps (i) and (ii) correspond to the preparation of the state |η0〉 = |ψ〉 ⊗ |α〉.

Step (iii) gives the state |ηt〉 = e−itH(w)
|η0〉. While step (iv) produces a mixed state since the

dynamics of a reduced system is obtained with the partial trace [1], so Ew [ψ] = Trancilla |ηt〉 〈ηt|.
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they exist) such that the state Ew[ψj ] is equal to the target state U |ψj〉 for each
|ψj〉 ∈ T . Mathematically this corresponds to the maximization of the average
fidelity

F (w) =
1

M

∑

|ψj〉∈T

〈ψj |U
†Ew[ψj ]U |ψj〉 . (2)

The function F (w) measures on average how the dynamics of the network repro-
duces in the register the target quantum gate U . It is non-convex in general and
may have many local maxima with F < 1. However, an optimal configuration
w̃ is interesting for practical purposes only if the error ǫ = 1 − F (w̃) is smaller
than the desired threshold [13] (say 10−3 – 10−4), so in the following we say that
a solution exists if an optimal w̃ is found with ǫ < 10−3. There are no known
theoretical tools to establish in advance whether this high-fidelity solution w̃ can
exist, so one has to rely on numerical methods. In the next section we discuss a
simple algorithm for finding w̃.

2.1 A simple algorithm for network optimization

The explicit form of the fidelity function (1 − F is a cost function) as a sum
over the training set allows us to use the stochastic gradient descent training
algorithm, which is widely used for in training artificial neural networks within
the backpropagation algorithm. However, since our training set is variable and
can be sampled from the Haar distribution of pure states we propose an adapted
version of the stochastic gradient descent with online training:

1: Choose the initial weights w (e.g. at random);
2: choose an initial learning rate κ;
3: repeat
4: generate a random |ψ〉 from the Haar measure;
5: for j = 1, . . . , L do
6: update the weights as

w → w + κ∇w〈ψ|U
†Ew [ψ]U |ψ〉 ; (3)

7: end for
8: decrease κ (see below);
9: until convergence (or maximum number of operations).

In the above algorithm, the weights are updated L times before changing the
state. The parameter L defines the amount of deterministic steps in the learning
procedure and it can be set to the minimum value 1, so that after each iteration
the state is changed, or to higher values. On the other hand, the learning
rate κ has to decrease [14] in an optimal way to assure convergence, a common
choice being κ ∝ s−1/2 where s is the step counter. On physical grounds, as we
discussed extensively in Ref. [12], the stochastic fluctuations given by choosing
random quantum states at different steps enable the training procedure to escape
from local maxima when the weights are far from the optimal point w̃.

Using the above algorithm, in Ref.[12] we considered pairwise interactions
described by physically reasonable Hamiltonians and we found different quantum
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network configurations which implement different quantum operations, such as
the quantum analogue of Toffoli and Fredkin gate.

3 Concluding remarks

We are proposing an alternative strategy to the physical implementation of quan-
tum operations which avoids time modulation and sophisticated control pulses.
This strategy consists in enlarging the number of qubits and engineering the
unmodulated pairwise interactions between them so that the desired operation
is implemented into the register subset (see Fig. 1) by the natural physical evo-
lution. Inspired by the analogy with the training of artificial neural networks,
we then propose a simple algorithm that is suitable for finding few-qubits net-
works which implement some important quantum gates. In the long term, by
finding more efficient training algorithms suitable for larger spaces, our strategy
could potentially provide an alternative paradigm for computation where some
quantum algorithms and/or many-qubit gates are obtained by simply “waiting”
for the natural dynamics of a suitably designed network.
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