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Abstract. Random Forests (RF) of tree classifiers are a popular en-
semble method for classification. RF have shown to be effective in many
different real world classification problems and nowadays are considered as
one of the best learning algorithms in this context. In this paper we dis-
cuss the effect of the hyperparameters of the RF over the accuracy of the
final model, with particular reference to different theoretically grounded
weighing strategies of the tree in the forest. In this way we go against
the common misconception which considers RF as an hyperparameter-free
learning algorithm. Results on a series of benchmark datasets show that
performing an accurate Model Selection procedure can greatly improve the
accuracy of the final RF classifier.

1 Introduction

It is well known that combining the output of several classifiers results in a
much better performance than using any one of them alone [1, 2]. In fact,
many state-of-the-art algorithms search for a weighted combination of simpler
classifiers [3]: Bagging [1], Boosting [4] and Bayesian approaches [5] or even
Neural Networks (NN) [6] and Kernel methods such as Support Vector Machines
(SVM) [7]. Optimising the generalisation performance of the final model still
represents an unsolved problem. How do we build these simple classifiers? How
many simple classifiers do we have to combine? How can we combine them? Is
there any theory which can support us in making these choices?

In [1] Breiman tried to give an answer to these questions by proposing the
Random Forests (RF) of tree classifiers, one of the state-of-the-art algorithm for
classification which has shown to be probably one of the most effective tool in
this context [8]. RF combine bagging to random subset feature selection. In
bagging, each tree is independently constructed using a bootstrap sample of the
dataset [9]. RF add an additional layer of randomness to bagging. In addition to
constructing each tree using a different bootstrap sample of the data, RF change
how the classification trees are constructed. In standard trees, each node is split
using the best division among all variables. In a RF, each node is split using the
best among a subset of predictors randomly chosen at that node. Eventually, a
simple majority vote is taken for prediction. In [1] it is shown that the accuracy
of the final model depends mainly on three different factors: how many trees
compose the forest, the accuracy of each tree and the correlation between them.
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The accuracy for RF converges to a limit as the number of trees in the forest
increases, while it rises as the accuracy of each tree increases and the correlation
between them decreases. RF counterintuitive learning strategy turns out to
perform very well compared to many other classifiers, including NN and SVM,
and is robust against overfitting [1, 8].

A common misconception about RF is to consider this algorithm as an
hyperparameter-free learning algorithm [10, 11]. In fact, there are several hyper-
parameters which characterise the performance of the final model: the number
of trees, the number of samples to extract during the bootstrap procedure, the
depth of each tree, the number of predictors exploited in each subset during the
growth of each tree, and finally the weights assigned to each tree. For this reason
we will show that a Model Selection (MS) procedure is needed in order to select
the set of hyperparameters [12] which allow to build a RF model characterised by
the best generalisation performances. Results on a series of benchmark datasets
show that an accurate MS procedure over these hyperparameters can remarkably
improve the accuracy of the final RF model.

2 Hyperparameters in Random Forests

Let us recall the multi-class classification problem [6] where a set of labeled
samples Dn = {(X1, Y1), · · · , (Xn, Yn)} drawn i.i.d. according to an unknown
probability distribution µ over X ×Y are available and where X ∈ X d and Y ∈
Y = {1, 2, · · · , c}. A learning algorithm A maps Dn into a function belonging
to a possibly unknown set of functions f ∈ F according to some criteria A :
Dn → F . The error of f in approximating µ is measured with reference to a
loss function ` : Y × Y → R. Since we are dealing with classification problems
we choose the loss function which counts the number of misclassified samples
`(f(X), Y ) = [f(X) 6= Y ]. The expected error of f in representing µ is called
generalization error [7] and it is defined as L(f) = E(X,Y )`(f(X), Y ). Since µ is
unknown L(f) cannot be computed, but we can compute its empirical estimator,

the empirical error, defined as L̂(f) = 1/n
∑n
i=1 `(f(Xi), Yi). The RF learning

and classification phases are reported in Algorithm 1. The learning phase of
each of the nt trees composing the RF is quite simple. From Dn, bbnc samples
are sampled with replacement and D′bbnc is built. A tree is constructed with

D′bbnc but the best split is chosen among a subset of nv predictors over the
possible d predictors randomly chosen at each node. The tree is grown until the
node contains a maximum of nl samples. During the classification phase of a
previously unseen X, each tree classifies X in a class Yi∈{1,··· ,nt}, and then the
final classification is the {p1, · · · , pnt}-weighted combination of all the answers
of each tree of the RF. If b = 1, nv =

√
n, nl = 1 and pi∈{1,··· ,nt} = 1 we get

the original RF formulation [1] where nt is usually chosen to tradeoff accuracy
and efficiency [13] or based on the out-of-bag estimate [1] or according to some
consistency result [13].

In this paper we argue that performing a MS procedure over b, nv and nl and
choosing a different weighting procedure can remarkably improve the accuracy

442

ESANN 2016 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2016, i6doc.com publ., ISBN 978-287587027-8. 
Available from http://www.i6doc.com/en/.



of the final model. In particular we exploit the Bootstrap (BOO) MS procedure
[12] in order to select the best values for b, nv and nl. The smaller b, nv and nl
are, the more independent are the trees in the RF, but also the lower will be the
accuracy of each one of the trees in the RF. Obviously, there is a tradeoff which
produces an optimal RF classifier. Besides b, nv and nl, the weights p{i∈1,··· ,nt}
are of paramount importance for the accuracy of an ensemble classifier [3, 2] and
for this reason we will compare the original choice of [1] (W1) with other two state
of the art alternatives. One (W2) is due to [14] and recently studied in [15], while
the other one (W3) has been proposed in [16] and recently further developed in
[3]. For what concerns W2, the proposal is to set pi = ln ((1− L(Ti))/L(Ti)), where
L(Ti) is the accuracy of the tree Ti. Since L(Ti) is unknown, we substitute

the empirical error L̂(Ti) over the out of bag estimate (which is an unbiased

estimator of L(Ti)). Instead, for what concerns W3, we have that pi = e−γL̂(Ti)

where γ is an hyperparameter which must be set as b, nv and nl according to
the BOO MS procedure. Note that the study of nt has been deeply investigated
in [13], so in this paper we consider it fixed and we study the effect of the other
hyperparameters for a given value of nt.

Algorithm 1: RF learning and classification phases.

/* Learning phase */

Input: Dn, nt, b, nv and nl

Output: A set of tree {T1, · · · , Tnt}
1 for i← 1 to nt do
2 D′bbnc sample with replacement bbnc sample from Dn;

3 Ti = DT(D′bbnc, nv , nl);

/* Classification phase */

Input: X, nt, {p1, · · · , pnt}
Output: Y

4 for i← 1 to nt do
5 Yi = Ti(X);
6 Y = arg maxj∈{1,··· ,c}

∑
i∈{1,··· ,nt}:Yi=j pi ;

/* Functions */

7 function T = DT(Dn, nv , nl);
8 if n ≤ nl then
9 T.l = mode({Y ∈ Dn}) ;

10 else
11 Split Dn in D′

n′ and D′′
n′′ based on the best predictor s over the nv ones sampled

from the whole d predictors ;
12 T.s = s; T.T ′ = DT(D′

n′ , nv , nl); T.T ′′ = DT(D′′
n′′ , nv , nl);

3 Results and Discussion

Let us consider a series of biclass and multiclass problems from [17]: Ban-
knoteAuth (D1), Anneal (D2), Parkinson (D3), Wine (D4), Seed (D5), Tic-tac-
toe (D6), Car (D7), LSVT (D8), Fertility (D9), Horse (D10), Blogger (D11),
Nursey (D12), Segment (D13), HAR (D14), MiceProteins (D15), Audiology
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(D16), CNAE (D17), Glass (D18), SensorlessDrive (D19), Optdigits (D20),
BreastTissue (D21), MovementsLibras (D22), PittsburgBridges (D23), Bach
(D24), Cmc (D25), and Yeast (D26). These datasets are commonly used as
a benchmark for learning algorithms. For each dataset, analogously to [2], up
to a maximum of 500 samples are randomly chosen to be in the training set Dn,
and the remaining examples are kept as test set if it is not already available. We
set nt = 100 and for the BOO MS procedure we set the number of bootstrap
resamples nb = 100 [12]. We compare the following RF models:

• RF with the weighting strategy W1 (pi∈{1,··· ,nt} = 1 which is the majority
vote [1]) in the following cases:

– STD: we set b, nv, and nl at the standard values b = 1, nv =
√
n,

and nl = 1 [1];
– O(b): we set nv =

√
n and nl = 1 while b ∈ {0.20, 0.22, · · · , 1.20} is

optimised based on BOO MS procedure;
– O(nv): we set b = 1 and nl = 1 while nv ∈ d{0.00,0.02,··· ,1.00} is

optimised based on BOO MS procedure ;
– O(nl): we set b = 1 and nv =

√
n while nl ∈ n·{0.00, 0.01, · · · , 0.50}+

1 is optimised based on BOO MS procedure;
– ALL: b ∈ {0.20, 0.22, · · · , 1.20}, nv ∈ d{0.00,0.02,··· ,1.00}, nl ∈ n ·
{0.00, 0.01, · · · , 0.50}+1 are optimised based on BOO MS procedure;

• RF with the weighting strategy W2 (pi = ln ((1− L̂(Ti))/L̂(Ti)) [14, 15]) in
the same sub-configuration depicted from W1: STD, O(b), O(nv), O(nl),
and ALL;

• RF with the weighting strategy W3 (pi = e−γL̂(Ti) [16, 3]) where γ ∈
10{−6.0,−5.8,··· ,4} is optimised based on BOO MS procedure, in the same
sub-configuration depicted from W1: STD, O(b), O(nv), O(nl), and ALL;

Table 1 reports on the error on the test set for all the datasets and for all the
experimental settings that we have just described while, Table 2 reports on the
corresponding value of the optimised hyperparameters which have been selected
during the BOO MS procedure.

From Tables 1 and 2 we can draw the following observations:
• optimising the hyperparameters (even just one of them) mostly leads to

model characterised by higher accuracy;
• the hyperparameter that has the more noticeable impact on the accuracy

of the model is the weighting strategy, followed by the nv, and then b.
Instead, the less important hyperparameter resulted to be nl;

• the usual choice of W1, b = 1, nv =
√
n, and nl = 1, which is obviously

the most computational inexpensive choice, resulted to be a competitive
one. However if one has to choose the best tradeoff, we would suggest W3,
b = 1, nv =

√
n, and nl = 1;

• the weighting strategy W2 resulted to be the more inaccurate way of
weighting the different classifiers even if this weighting strategy has very
strong theoretical properties [15];

• the weighting strategy W3 resulted to be really effective in this context
and this supports all its theoretical properties studied in [16, 3];
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W1 W2 W3
Dn STD O(b) O(nv) O(nl) ALL STD O(b) O(nv) O(nl) ALL STD O(b) O(nv) O(nl) ALL

D1 0.33 0.33 0.33 0.33 0 0.33 0.33 0.33 0.33 0 0.33 0.33 0.33 0.33 0
D2 3 2 1 4 0 3 2 1 4 0 2 1 0 2 0
D3 3.39 1.69 1.69 3.39 1.69 3.39 1.69 1.69 3.39 1.69 3.39 1.69 1.69 3.39 0
D4 3.77 3.77 1.89 5.66 1.89 3.77 3.77 1.89 5.66 0 3.77 1.89 1.89 1.89 0
D5 4.76 3.17 3.17 4.76 3.17 7.94 3.17 3.17 4.76 3.17 4.76 1.59 3.17 3.17 1.59
D6 8 8 5.67 7.67 5.33 8 7.67 5.33 8.33 5 7.67 7 4.33 7.67 3.67
D7 10.67 9.33 5.33 9.67 5.67 10.67 9.33 5.33 9.33 5.33 10 7.33 4.67 8.33 4
D8 15.79 13.16 7.89 13.16 5.26 15.79 10.53 10.53 13.16 5.26 15.79 7.89 7.89 7.89 2.63
D9 13.33 10 13.33 13.33 10 13.33 10 13.33 13.33 10 13.33 10 10 10 3.33
D10 22.06 17.65 14.71 22.06 11.76 22.06 16.18 14.71 20.59 13.24 16.18 14.71 13.24 11.76 10.29
D11 20 16.67 16.67 20 10 20 20 20 23.33 10 20 13.33 16.67 16.67 6.67
D12 10.67 10.67 11.33 11.67 10 93.67 10.67 12 74 9.33 10.67 9 9.67 10.33 8.67
D13 10.33 7.33 5.67 8.67 4.33 100 8.67 100 97 6.33 10 6.33 5.67 8 3.67
D14 12.33 11 11.33 12 9.67 100 11.67 100 99 11 11.67 10.33 10.67 12 9.67
D15 11.67 13 0 29 0 100 100 87.33 87.33 0 6 0 0 2.67 0
D16 23.08 11.54 11.54 15.38 3.85 100 100 100 92.31 7.69 23.08 7.69 11.54 15.38 3.85
D17 15 14 14 16.67 13.33 99.67 98.33 89.33 86 16.33 14.67 13.33 13 14.33 12
D18 12.5 7.81 7.81 9.38 6.25 100 100 100 92.19 62.5 9.38 7.81 7.81 9.38 6.25
D19 15 14 13.67 15.67 12.67 100 100 99 94 19.67 14 12.67 12.67 14.33 11.33
D20 11.33 11 10 11.67 9.67 100 100 99.67 95.33 88.33 11.33 10.33 10.33 11.67 9.33
D21 28.13 28.13 25 31.25 15.63 100 96.88 96.88 96.88 75 25 25 21.88 25 15.63
D22 26.85 26.85 25 27.78 24.07 100 100 100 97.22 87.96 26.85 26.85 25.93 27.78 23.15
D23 34.38 34.38 34.38 34.38 31.25 100 90.63 93.75 81.25 68.75 34.38 31.25 31.25 34.38 28.13
D24 29.33 27.67 27.33 29.67 27.33 100 99.67 99.67 97 88.67 29.33 27 27.33 29.67 26.67
D25 44 42.33 41.67 44.67 40.67 80.67 77.33 78 76 59 43.67 42.67 41 43.33 39.33
D26 43.67 41.33 41.67 42.33 39.67 99.67 99.33 99.33 95.33 72.67 43.33 40 41.67 42 38.67

Table 1: Errors (in percentage) on the test set of the different RF models.

• by observing Table 2, it is possible to note that even if the value chosen
as hyperparameter in the MS phase differs a lot from the standard one
(b = 1, nv =

√
n, and nl = 1), the corresponding accuracy in Table 1 may

not vary so much; this means that there are a lot of combinations of the
hyperparameters which are able to give good results. This may be useful
when it comes to perform a MS phase, since the task of selecting good
hyperparameters results simplified;

• for what concerns the choice of the hyperparameters, b results to be the
one that is more often different from the conventional choice of b = 1,
while nl is mostly near to nl = 0, which is the conventional choice. Note
that having b < 1 or nl > 0 increases also the speed of the training and
classification phase; hence, in the future it will be interesting to check how
a computational budget can influence the accuracy of the model.

In conclusion, we can state that we have empirically proved that the different
hyperparameters characterising the RF learning algorithm have a remarkable
impact on the accuracy of the final model, even the ones that are commonly
not considered as hyperparameters (b and nl). Most of all, choosing a good
weighting strategy (in particular W3) results in being one of the most effective
ways to improve the generalisation performance of the final model. This work
is a step forward in understanding the learning properties of the RF and more
work is needed in this direction. In particular, a deeper empirical analysis is
needed and a theoretical characterisation of the different phenomena should be
provided. In any case, from the results of this paper, we can definitely state
that a MS phase should always be performed when RF is adopted and this MS
is always beneficial with just a computational overhead on the learning phase
and no overhead over the classification phase.
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