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Abstract. Hyperemia is a parameter that describes the degree of red-
ness in a tissue. When it affects the bulbar conjunctiva, it can serve as
an early indicator for pathologies such as dry eye syndrome. Hyperemia is
measured using scales, which are collections of images that show different
severity levels. Features computed from the images can be used to develop
an automatic grading system with the help of machine learning algorithms.
In this work, we present a methodology that analyses the influence of each
feature when determining the hyperemia level.

1 Introduction

Hyperemia is the occurrence of redness in a tissue. It appears when blood ves-
sels are engorged, and it is an early symptom of several pathologies. When
the affected tissue is the conjunctiva, it is frequently related with allergies, con-
junctivitis, or dry eye syndrome. Hyperemia is measured as a degree in a scale.
There are several scales available for specialists, such as Efron and CCLRU grad-
ing scales. Both scales consist in a set of photos or drawings that represent levels
of severity. The specialist compare these images to the patient’s eyes and assigns
a value in the scale with respect to the most similar picture.

This time-consuming process presents a high level of intra and inter expert
subjectivity. Those drawbacks can be solved if we develop an automatic method-
ology, yet there are few approaches proposed on the subject, and they are not
completely automatic [1, 2]. There are several works regarding some of the steps
involved in the measurement, specially the creation of grading scales and the au-
tomatic computation of image features [3, 4]. However, there are few attempts
of one of the most important steps: perform comparisons of features and define
which ones are the most relevant. In this work, we propose a methodology to
solve this issue, determining which features are the most significant in relation
to hyperemia grading.

∗This work has been supported by the Secretaŕıa de Estado de Investigación of the Spanish
Government (Grant TIN2015-65069-C2-1-R).
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The paper is structured as follows: Section 2 will depict the feature selection
approach. Section 3 will explain performed experiments and will show the ob-
tained results and, lastly, Section 4 will present the conclusions.

2 Feature selection

Hyperemia grading depends on several features of the image. Specialists take
into account the general hue of the conjunctiva, and also the vessel tonality. A
red or yellow colouration can both be hints of hyperemia, while the whiter the
conjunctiva, the lower the level. The disposition of the vessels and its width is
also relevant, as hyperemia is produced by vessel engorgement. Several width
vessels, or a large number of thinner ones, usually imply a higher hyperemia
level. The features we consider were calculated using different colourspaces, in
order to find which one reflects better the expert perception. We employ 25
features, some of them proposed by earlier works [5] and some suggested by
optometrists. Three of the features are related with vessel quantity, one mea-
sures vessel width, four study the vessels colour, nine compute different hues in
the conjunctiva, and eight measure the colouration of the full image. Once the
features are computed, we need to transform them to the grading scale ranges
by means of machine learning algorithms [6]. In this work, we analyse different
feature combinations in order to select the most influential ones.

Once several features have been computed for each image, it is expected
that some of them will be related, as they refer to similar characteristics (for
example, red level in different colourspaces). This arises the need to determine
which features provide the most useful information. Feature selection methods
examine the original set of features in order to obtain a smaller subset that
preserves most of the information. To that end, they use a certain criteria (in-
formation gain, correlation) to decide if each factor is worth including or not.
We can distinguish three groups of feature selection techniques: filters, wrappers
and embedded methods. Wrappers evaluate each feature subset by building a
predictive model and looking at the accuracy using these features while filters
can directly compute a statistic on the given feature subset. Hence, wrappers
are slower than filters, but also to provide better results [7]. Finally, embedded
methods blend the feature selection with the training process of the prediction
model, offering more accurate results than filters but at a higher computational
cost.

In this work, the three approaches were tested. On one hand, we used Corre-
lation based Feature Selection (CFS) [8], which is a filter method and, therefore,
independent from the learning method. It was originally designed to be used
in classification problems, so a first discretisation stage is needed in order to
transform the data. To that end, the used algorithm is MDL [9]. CFS returns
as output a subset containing the relevant features. Moreover, we tested Relief
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[10], another filter method. Instead of constructing a subset of features, it orders
them in a ranking. It returns the whole list of features, but sorted by relevance.
If a cross-validation technique is used, the filter could return a different sorted
list for each fold, and it will be necessary to define a threshold from which cre-
ate the different subsets. On the other hand, we employed a wrapper that uses
M5 algorithm [11]. It generates a decision list for regression problems using the
separate-and-conquer technique. In each iteration it builds a model tree using
M5 and makes the best leaf into a rule. Search strategy is best first. Also, we im-
plemented a wrapper that uses the Support Vector Machine for regression. The
algorithm uses the improvements proposed in [12] for the Sequential Minimal
Optimisation (SMO) method. Finally, we implemented an embedded method
that uses Recursive Feature Elimination with Support Vector Regression [13]. It
starts with the full set of features and assigns them weights. The features whose
absolute weights are the smallest are removed and the process continues iterat-
ing until the minimum number of features, previously established, is reached.

3 Results

We performed experiments with 105 frames extracted from hyperemia videos
provided by the Optometry Group of the Department of Applied Physics (Uni-
versity of Santiago de Compostela). These frames were labelled by two experts
and the average gradings were used as outputs. The features were computed for
every frame, each one of them providing values in different continuous ranges.
Then, these values were used to train a system using a 10-fold cross validation.
The feature selection experiments were performed using the data mining soft-
ware Weka [14]. Then, the classifiers were trained and tested again using only
the selected features.

We used a 10-fold cross validation when computing the features. Other cross-
validation techniques, such as leave-one-out, were also tested with similar results.
We maintain the same subsets for all the tests in order to compare the results.
We can observe in Figures 1 and 2 the feature selection by folds, where Fn repre-
sents each of the 25 features, and the radius represents the number of folds where
the feature is selected. The normalised values were computed by applying the
feature selection technique after transforming the values within the [−1, 1] range.

Filter methods are the only ones affected by normalisation. Even so, the fea-
tures that appear in a higher number of folds ended up being almost the same
for the two options. There are some features that are commonly chosen by all
methods in most folds, such as F14 or F21. However, others such as F10 and F15

appear frequently only in one case (CCLRU scale with Relief).

Filter approaches provide similar results in all ten folds, which leads to more
confidence when picking the subset of features for the whole image set. Wrappers
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Fig. 1: Efron data. Left: raw values. Right: normalised values.

Fig. 2: CCLRU data. Left: raw values. Right: normalised values.

results present a higher variability between folds because they perform an addi-
tional 5-fold cross validation when determining the features. Also, they usually
obtain smaller sets because of the search strategy, which starts with an empty
set and then adds features one by one until the accuracy is not improved any
further. The aimed number of features for the embedded method was set to
5. Tests were performed with higher subsets, but they presented the same high
variability.

Since we obtain a set of best features for each fold, we need to create a set
combining these results. There are several possibilities depending on how many
features are selected on average and how much information is lost by removing
features. For the ranker method, we established a minimum value averaging
the maximum relevance of the ten folds and considered only the features which
ranked higher than half that value. In view of the results, we decided to choose
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those features that have been selected in at least 7 out of 10 folds (Table 1).
This ensures that selected features are relevant enough, as they are chosen in
most of the folds, and provides better results than choosing those that appear
in a higher number of folds, as the condition will be too restrictive and subsets
will be too small.

CFS is the only method that provides a different subset for normalised and
not normalised values. There is only one different feature (17 instead of 23 in
CCLRU), and both features measure a similar concept. We chose to keep them
both in the final tests, as the resulting subset is still small.

Table 1: Features that appear in at least 7 out of 10 folds.

Method
Efron CCLRU

# selected features # selected features

CFS 5 4, 14, 21, 23, 25 5 4, 14, 21, 23, 25
CFS (norm.) 5 4, 14, 21, 23, 25 5 4, 14, 17, 21, 25

Relief 4 13, 14, 15, 21 7 2, 10, 12, 13, 14, 15, 21
Relief (norm.) 4 13, 14, 15, 21 7 2, 10, 12, 13, 14, 15, 21

M5 1 21 3 8, 13, 21
SMOReg 3 4, 14, 21 2 14, 21
SVR-RFE 2 2, 12 2 2, 12

Three classifiers were trained with the features, selected to cover different ap-
proaches: Multi-Layer Perceptron (MLP), Decision Trees (DT), and Naive-Bayes
(NB). Other approaches, such as SVM, were tested but they did not improve
the results. Results are depicted in Table 2. We can observe how, in most cases,
the mean squared error remains in a similar range as the one from the complete
feature set. In some cases, this value improves, so that some of the features
were adding noise to the system instead of providing useful information. There
are exceptions, the more relevant one is M5 method for Efron, that worsens the
results in MLP and DT. This happens because only one feature was chosen for
this case, and it does not provide enough information on its own.

Table 2: Comparison of mean square error values.

Method
MLP DT NB

Efron CCLRU Efron CCLRU Efron CCLRU

All 0.21787 0.13740 0.18621 0.12718 0.50636 0.34273
Relief 0.21802 0.13747 0.18762 0.13754 0.44364 0.21000
CFS 0.10770 0.13716 0.23290 0.11966 0.48364 0.39727
M5 0.86141 0.06083 0.19468 0.12129 0.45909 0.24364

SMOReg 0.11443 0.07507 0.19271 0.11590 0.48364 0.17091
SVR-RFE 0.12839 0.08192 0.16621 0.11648 0.45000 0.31364
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4 Conclusions

Hyperemia is an early indicator of several pathologies, making it necessary to
perform a prompt and accurate evaluation of the patient. However, the cur-
rent manual process is tedious and subjective, hence the need of implementing
an automatic grading methodology. In this work, we tackle one of the steps of
such methodology: the evaluation of the different combinations of features of the
image, determining which are the most relevant by means of feature selection
techniques. We are able to reduce our feature set from 25 to 2-3 values. In the
Efron scale, the MLP classifier achieves the lowest error when using the features
selected with the CFS approach and on the CCLRU scale, the MLP achieves the
lowest error when using the features selected with the M5 wrapper.

Our next objective is to integrate these results in a framework for the au-
tomatisation of hyperemia grading.
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